1 欣欣 . 《社会蓝皮书:2017年中国社会形势分析与预测》发布[J]. 出版参考, 2017(1):69-69. (XIN X. Publishing of Blue Book of China’s Society: Society of China Analysis and Forecast (2017)[J]. Information on Publication, 2017(1):69-69.)
2 MORRIS L . Combating fraud in health care: an essential component of any cost containment strategy[J]. Health Affairs, 2009, 28(5):1351-1356.
3 O’SHAUGHNESSY C , DIVISION D S P . Older Americans act nutrition programs: a community-based nutrition program helping older adults remain at home[J].Journal of Nutrition in Gerontology and Geriatrics, 2015,34(2):90-109.
4 LIU J , BIER E , WILSON A , et al. Graph analysis for detecting fraud, waste , and abuse in healthcare data[C]// Proceedings of the 27th Conference on Innovative Applications of Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015:3912-3919.
5 JOUDAKI H , RASHIDIAN A , MINAEIBIDGOLI B , et al . Using data mining to detect health care fraud and abuse: a review of literature[J]. Global Journal of Health Science, 2014, 7(1):194-202.
6 VIEGAS J L , CEPEDA N M , VIEIRA S M . Electricity fraud detection using committee semi-supervised learning[C]// Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 1-6.
7 SEO J, MENDELEVITCH O . Identifying frauds and anomalies in Medicare-B dataset[C]// Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2017: 3664-3667.
8 SHAN Y , MURRAY D W , SUTINEN A . Discovering inappropriate billings with local density based outlier detection method[C]// Proceedings of the 8th Australasian Data Mining Conference. Sydney: Australian Computer Society, 2009: 93-98.
9 ZHANG W , HE X . An anomaly detection method for medicare fraud detection[C]// Proceedings of the 2017 IEEE International Conference on Big Knowledge. Piscataway: IEEE, 2017: 309-314.
10 BAUDER R A , KHOSHGOFTAAR T M . The detection of medicare fraud using machine learning methods with excluded provider labels[C]// Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference. Palo Alto, CA: AAAI Press, 2018:404-409.
11 BAUDER R , KHOSHGOFTAAR T . Medicare fraud detection using random forest with class imbalanced big data[C]// Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration. Piscataway: IEEE, 2018: 80-87.
12 PENG H , YOU M . The health care fraud detection using the pharmacopoeia spectrum tree and neural network analytic contribution hierarchy process[C]// Proceedings of the 2016 IEEE International Conference on Trust, Security and Privacy in Computing and Communications / International Conference on Big Data Science and Engineering / International Symposium on Image and Signal Processing and Analysis. Piscataway: IEEE, 2016: 2006-2011.
13 ORTEGA P A , FIGUEROA C J , RUZ G A . A medical claim fraud/abuse detection system based on data mining: a case study in Chile[C]// Proceedings of the 2006 International Conference on Data Mining. Long Island City, NY: CSREA Press, 2006: 224-231.
14 PANDEY P , SAROLIYA A , KUMAR R . Analyses and detection of health insurance fraud using data mining and predictive modeling techniques[M]// PANT M, RAY K, SHARMA T, et al . Soft Computing: Theories and Applications, AISC 584. Cham: Springer, 2018: 41-49.
15 BRANTING L K , REEDER F , GOLD J , et al . Graph analytics for healthcare fraud risk estimation[C]// Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2016: 845-851.
16 LIU J , BIER E , WILSON A , et al . Graph analysis for detecting fraud, waste, and abuse in healthcare data[J]. AI Magazine, 2016, 37(2): 33-46.
17 LLOYD J L , WELLMAN N S . Older Americans act nutrition programs: a community-based nutrition program helping older adults remain at home[J]. Journal of Nutrition in Gerontology and Geriatrics, 2015, 34(2): 90-109.
18 DEFFERRARD M , BRESSON X , VANDERGHEYNST P . Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 3844-3852.
19 KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[EB/OL]. [2018-09-09]. https://arxiv.org/pdf/1609.02907.pdf.
20 AVRACHENKOV K , GONÇALVES P , SOKOL M . On the choice of kernel and labelled data in semi-supervised learning methods[C]// Proceedings of the 2013 International Workshop on Algorithms and Models for the Web-Graph, LNCS 8305. Cham: Springer, 2013: 56-67.
21 CARCILLO F , LE BORGNE Y A , CAELEN O , et al . Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization[J]. International Journal of Data Science and Analytics, 2018, 5(4): 285-300.
22 CESA-BIANCHI N , GENTILE C , VITALE F , et al . Active learning on trees and graphs[EB/OL]. [2018-06-22]. https://arxiv.org/pdf/1301.5112.pdf.
23 ZHENG P , YUAN S , WU X , et al . One-class adversarial nets for fraud detection[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 1286-1293.
24 KEMMLER M , RODNER E , WACKER E S , et al . One-class classification with Gaussian processes[J]. Pattern Recognition, 2013, 46: 3507-3518.
25 TAX D M J, DUIN R P W . Uniform object generation for optimizing one-class classifiers[J]. Journal of Machine Learning Research, 2001, 2: 155-173.
26 MANEVITZ L M , YOUSEF M . One-class SVMs for document classification[J]. Journal of Machine Learning Research, 2001, 2: 139-154. |