1 |
ZHANG C, SUN J, ZHU X, et al. Privacy and security for online social networks: challenges and opportunities [J]. IEEE Network, 2010, 24(4): 13-18.
|
2 |
CHANAL P M, KAKKASAGERI M S. Security and privacy in IoT: a survey [J]. Wireless Personal Communications, 2020, 115(2): 1667-1693.
|
3 |
YI X, BERTINO E, RAO F Y, et al. Privacy-preserving user profile matching in social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(8): 1572-1585.
|
4 |
DING K, ZHANG J. Multi-party privacy conflict management in online social networks: a network game perspective [J]. IEEE/ACM Transactions on Networking, 2020, 28(6): 2685-2698.
|
5 |
LAN L, JU S, JIN H. Anonymizing social network using bipartite graph[C]// Proceedings of the 2010 International Conference on Computational and Information Sciences. Piscataway: IEEE, 2010: 993-996.
|
6 |
DWORK C. Differential privacy[C]// Proceedings of the 2006 International Colloquium on Automata, Languages, and Programming, LNCS 4052. Berlin: Springer, 2006: 1-12.
|
7 |
端祥宇,袁冠,孟凡荣. 动态社区发现方法研究综述[J]. 计算机科学与探索, 2021, 15(4):612-630.
|
|
DUAN X Y, YUAN G, MENG F R. Dynamic community detection: a survey [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 612-630.
|
8 |
HOU L, NI W, ZHANG S, et al. PPDU: dynamic graph publication with local differential privacy[J]. Knowledge and Information Systems, 2023, 65(7): 2965-2989.
|
9 |
QIN Z, YU T, YANG Y, et al. Generating synthetic decentralized social graphs with local differential privacy [C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 425-438.
|
10 |
GAO T, LI F. Protecting social network with differential privacy under novel graph model [J]. IEEE Access, 2020, 8: 185276-185289.
|
11 |
YUAN Q, ZHANG Z, DU L, et al. PrivGraph: differentially private graph data publication by exploiting community information[C]// Proceedings of the 32nd USENIX Security Symposium. Berkeley: USENIX Association, 2023: 3241-3258.
|
12 |
ZHU H, ZUO X, XIE M. DP-FT: a differential privacy graph generation with field theory for social network data release [J]. IEEE Access, 2019, 7: 164304-164319.
|
13 |
WEI C, JI S, LIU C, et al. AsgLDP: collecting and generating decentralized attributed graphs with local differential privacy [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3239-3254.
|
14 |
ZHU T, LI J, HU X, et al. The dynamic privacy-preserving mechanisms for online dynamic social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(6): 2962-2974.
|
15 |
GAO W, ZHOU J, LIN Y, et al. Compressed sensing-based privacy preserving in labeled dynamic social networks [J]. IEEE Systems Journal, 2023, 17(2): 2201-2212.
|
16 |
LI S, DONG K, LIU Z, et al. Dynamic network data protection algorithm using differential privacy in Internet of things[C]// Proceedings of the 2019 IEEE International Conference on Smart Internet of Things. Piscataway: IEEE, 2019: 306-313.
|
17 |
WANG Q, ZHANG Y, LU X, et al. Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(4): 591-606.
|
18 |
BEBENSEE B. Local differential privacy: a tutorial [EB/OL]. [2023-12-12]..
|
19 |
ROSSETTI G, CAZABET R. Community discovery in dynamic networks: a survey [J]. ACM Computing Surveys, 2018, 51(2): No.35.
|
20 |
SU X, CHENG J, YANG H, et al. IncNSA: detecting communities incrementally from time-evolving networks based on node similarity [J]. International Journal of Modern Physics C, 2020, 31(7): No.2050094.
|
21 |
高瑞,陈学斌,谷铮,等. 满足个性化差分隐私的社交网络图生成方法[J]. 太原理工大学学报, 2024, 55(1): 163-171.
|
|
GAO R, CHEN X B, GU Z, et al. Social network graph generation method satisfying personalized differential privacy [J]. Journal of Taiyuan University of Technology, 2024, 55(1): 163-171.
|
22 |
HIDANO S, MURAKAMI T. Degree-preserving randomized response for graph neural networks under local differential privacy[EB/OL]. [2023-12-02]..
|
23 |
BALLE B, BARTHE G, GABOARDI M. Privacy amplification by subsampling: tight analyses via couplings and divergences[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 6280-6290.
|