Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3177-3184.DOI: 10.11772/j.issn.1001-9081.2023101462
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                    Pengbo WANG1, Wuyang SHAN1( ), Jun LI1, Mao TIAN2, Deng ZOU1, Zhanfeng FAN3
), Jun LI1, Mao TIAN2, Deng ZOU1, Zhanfeng FAN3
												  
						
						
						
					
				
Received:2023-11-10
															
							
																	Revised:2024-04-12
															
							
																	Accepted:2024-04-15
															
							
							
																	Online:2024-10-15
															
							
																	Published:2024-10-10
															
							
						Contact:
								Wuyang SHAN   
													About author:WANG Pengbo, born in 1998, M. S. candidate. His research interests include image forensics, deep learning.Supported by:
        
                   
            王朋博1, 单武扬1( ), 李军1, 田茂2, 邹登1, 范占锋3
), 李军1, 田茂2, 邹登1, 范占锋3
                  
        
        
        
        
    
通讯作者:
					单武扬
							作者简介:王朋博(1998—),男,河南漯河人,硕士研究生,CCF会员,主要研究方向:图像取证、深度学习基金资助:CLC Number:
Pengbo WANG, Wuyang SHAN, Jun LI, Mao TIAN, Deng ZOU, Zhanfeng FAN. Robust splicing forensic algorithm against high-intensity salt-and-pepper noise[J]. Journal of Computer Applications, 2024, 44(10): 3177-3184.
王朋博, 单武扬, 李军, 田茂, 邹登, 范占锋. 抗高强度椒盐噪声的鲁棒拼接取证算法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3177-3184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101462
| 数据集 | 样本数 | 图像分辨率 | 图像格式 | 
|---|---|---|---|
| DSO-1(RGB) | 500 | 2 048×1 536~1 536×2 048 | PNG | 
| DSO-1(灰度) | 500 | 2 048×1 536~1 536×2 048 | PNG | 
| Columbia(RGB) | 900 | 757×568~1 152×768 | PNG | 
| Columbia(灰度) | 900 | 757×568~1 152×768 | PNG | 
Tab. 1 Information of datasets
| 数据集 | 样本数 | 图像分辨率 | 图像格式 | 
|---|---|---|---|
| DSO-1(RGB) | 500 | 2 048×1 536~1 536×2 048 | PNG | 
| DSO-1(灰度) | 500 | 2 048×1 536~1 536×2 048 | PNG | 
| Columbia(RGB) | 900 | 757×568~1 152×768 | PNG | 
| Columbia(灰度) | 900 | 757×568~1 152×768 | PNG | 
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.631 | 0.961 | 0.645 | 0.962 | 
| 5 | 0.139 | 0.923 | 0.514 | 0.947 | 
| 10 | 0.132 | 0.949 | 0.474 | 0.944 | 
| 30 | 0.166 | 0.922 | 0.377 | 0.936 | 
| 50 | 0.165 | 0.922 | 0.303 | 0.932 | 
Tab. 2 Results of ablation experiments (RGB images in DSO-1 dataset)
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.631 | 0.961 | 0.645 | 0.962 | 
| 5 | 0.139 | 0.923 | 0.514 | 0.947 | 
| 10 | 0.132 | 0.949 | 0.474 | 0.944 | 
| 30 | 0.166 | 0.922 | 0.377 | 0.936 | 
| 50 | 0.165 | 0.922 | 0.303 | 0.932 | 
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.312 | 0.927 | 0.449 | 0.941 | 
| 5 | 0.151 | 0.923 | 0.417 | 0.938 | 
| 10 | 0.133 | 0.922 | 0.402 | 0.937 | 
| 30 | 0.165 | 0.922 | 0.345 | 0.933 | 
| 50 | 0.173 | 0.922 | 0.266 | 0.929 | 
Tab. 3 Results of ablation experiments (grayscale images in DSO-1 dataset)
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.312 | 0.927 | 0.449 | 0.941 | 
| 5 | 0.151 | 0.923 | 0.417 | 0.938 | 
| 10 | 0.133 | 0.922 | 0.402 | 0.937 | 
| 30 | 0.165 | 0.922 | 0.345 | 0.933 | 
| 50 | 0.173 | 0.922 | 0.266 | 0.929 | 
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.556 | 0.673 | 0.736 | 0.800 | 
| 5 | 0.324 | 0.499 | 0.660 | 0.741 | 
| 10 | 0.257 | 0.465 | 0.635 | 0.722 | 
| 30 | 0.282 | 0.481 | 0.563 | 0.672 | 
| 50 | 0.284 | 0.444 | 0.459 | 0.597 | 
Tab. 4 Results of ablation experiments (RGB images in Columbia dataset )
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.556 | 0.673 | 0.736 | 0.800 | 
| 5 | 0.324 | 0.499 | 0.660 | 0.741 | 
| 10 | 0.257 | 0.465 | 0.635 | 0.722 | 
| 30 | 0.282 | 0.481 | 0.563 | 0.672 | 
| 50 | 0.284 | 0.444 | 0.459 | 0.597 | 
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.556 | 0.674 | 0.709 | 0.782 | 
| 5 | 0.305 | 0.495 | 0.661 | 0.742 | 
| 10 | 0.271 | 0.467 | 0.609 | 0.702 | 
| 30 | 0.281 | 0.476 | 0.550 | 0.657 | 
| 50 | 0.287 | 0.450 | 0.450 | 0.589 | 
Tab. 5 Results of ablation experiments (grayscale images in Columbia dataset)
| 噪声强度/% | 仅取证 | 本文算法 | ||
|---|---|---|---|---|
| MCC | F1 | MCC | F1 | |
| 1 | 0.556 | 0.674 | 0.709 | 0.782 | 
| 5 | 0.305 | 0.495 | 0.661 | 0.742 | 
| 10 | 0.271 | 0.467 | 0.609 | 0.702 | 
| 30 | 0.281 | 0.476 | 0.550 | 0.657 | 
| 50 | 0.287 | 0.450 | 0.450 | 0.589 | 
| 噪声 强度/% | EVP[ | CAGI[ | PSCC-Net[ | FS[ | NOI2[ | ADQ2[ | 本文算法 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | |
| 1 | 0.100 | 0.918 | 0.187 | 0.923 | 0.306 | 0.929 | 0.312 | 0.922 | 0.113 | 0.922 | 0.006 | 0.004 | 0.645 | 0.962 | 
| 5 | 0.160 | 0.918 | 0.138 | 0.922 | 0.339 | 0.925 | 0.204 | 0.922 | 0.141 | 0.923 | 0.003 | 0.004 | 0.514 | 0.947 | 
| 10 | 0.199 | 0.918 | 0.144 | 0.922 | 0.298 | 0.922 | 0.213 | 0.922 | 0.200 | 0.922 | 0.004 | 0.004 | 0.474 | 0.944 | 
Tab. 6 Performance comparison of different forensic algorithms on DSO-1 noise dataset
| 噪声 强度/% | EVP[ | CAGI[ | PSCC-Net[ | FS[ | NOI2[ | ADQ2[ | 本文算法 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | |
| 1 | 0.100 | 0.918 | 0.187 | 0.923 | 0.306 | 0.929 | 0.312 | 0.922 | 0.113 | 0.922 | 0.006 | 0.004 | 0.645 | 0.962 | 
| 5 | 0.160 | 0.918 | 0.138 | 0.922 | 0.339 | 0.925 | 0.204 | 0.922 | 0.141 | 0.923 | 0.003 | 0.004 | 0.514 | 0.947 | 
| 10 | 0.199 | 0.918 | 0.144 | 0.922 | 0.298 | 0.922 | 0.213 | 0.922 | 0.200 | 0.922 | 0.004 | 0.004 | 0.474 | 0.944 | 
| 前提 条件 | 噪声 强度/% | CAGI[ | FS[ | CAT-Net[ | PSCC-Net[ | ||||
|---|---|---|---|---|---|---|---|---|---|
| MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | ||
| 无预 处理 | 1 | 0.187 | 0.923 | 0.312 | 0.922 | 0.288 | 0.925 | 0.306 | 0.929 | 
| 5 | 0.138 | 0.922 | 0.204 | 0.922 | 0.241 | 0.923 | 0.339 | 0.925 | |
| 10 | 0.144 | 0.922 | 0.213 | 0.922 | 0.225 | 0.922 | 0.298 | 0.922 | |
| 有预 处理 | 1 | 0.404 | 0.936 | 0.484 | 0.925 | 0.452 | 0.937 | 0.568 | 0.952 | 
| 5 | 0.377 | 0.936 | 0.444 | 0.924 | 0.404 | 0.934 | 0.482 | 0.944 | |
| 10 | 0.397 | 0.936 | 0.454 | 0.924 | 0.389 | 0.933 | 0.443 | 0.940 | |
Tab. 7 Comparison of universal effects of preprocessing on DSO-1 dataset
| 前提 条件 | 噪声 强度/% | CAGI[ | FS[ | CAT-Net[ | PSCC-Net[ | ||||
|---|---|---|---|---|---|---|---|---|---|
| MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | ||
| 无预 处理 | 1 | 0.187 | 0.923 | 0.312 | 0.922 | 0.288 | 0.925 | 0.306 | 0.929 | 
| 5 | 0.138 | 0.922 | 0.204 | 0.922 | 0.241 | 0.923 | 0.339 | 0.925 | |
| 10 | 0.144 | 0.922 | 0.213 | 0.922 | 0.225 | 0.922 | 0.298 | 0.922 | |
| 有预 处理 | 1 | 0.404 | 0.936 | 0.484 | 0.925 | 0.452 | 0.937 | 0.568 | 0.952 | 
| 5 | 0.377 | 0.936 | 0.444 | 0.924 | 0.404 | 0.934 | 0.482 | 0.944 | |
| 10 | 0.397 | 0.936 | 0.454 | 0.924 | 0.389 | 0.933 | 0.443 | 0.940 | |
| 1 | ZHU T, ZHENG J, LAI Y, et al. Image blind detection based on LBP residue classes and color regions[J]. PLoS ONE, 2019, 14(8): No.e0221627. | 
| 2 | HAO J, ZHANG Z, YANG S, et al. TransForensics: image forgery localization with dense self-attention[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15035-15044. | 
| 3 | HADWIGER B C, RIESS C. Deep metric color embeddings for splicing localization in severely degraded images[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2614-2627. | 
| 4 | 颜普,苏亮亮,邵慧,等. 基于多支持区域局部亮度序的图像伪造检测[J]. 计算机应用, 2019, 39(9):2707-2711. | 
| YAN P, SU L L, SHAO H, et al. Image forgery detection based on local intensity order and multi-support region[J]. Journal of Computer Applications, 2019, 39(9): 2707-2711. | |
| 5 | COZZOLINO D, VERDOLIVA L. Noiseprint: a CNN-based camera model fingerprint[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 144-159. | 
| 6 | 张新明,康强,程金凤,等. 采用自适应四点窗中点滤波的高椒盐噪声滤除方法[J]. 计算机应用, 2017, 37(3):832-838. | 
| ZHANG X M, KANG Q, CHENG J F, et al. Adaptive four-dot midpoint filter for removing high density salt-and-pepper noise in images[J]. Journal of Computer Applications, 2017, 37(3): 832-838. | |
| 7 | LIANG L, DENG S, GUEGUEN L, et al. Convolutional neural network with median layers for denoising salt-and-pepper contaminations[J]. Neurocomputing, 2021, 442: 26-35. | 
| 8 | BAMMEY Q, NIKOUKHAH T, GARDELLA M, et al. Non-semantic evaluation of image forensics tools: methodology and database[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 2383-2392. | 
| 9 | KWON M J, YU I J, NAM S H, et al. CAT-Net: compression artifact tracing network for detection and localization of image splicing[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 375-384. | 
| 10 | JANA M, JANA B, JOARDAR S. Local feature based self-embedding fragile watermarking scheme for tampered detection and recovery utilizing AMBTC with fuzzy logic[J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(10 Pt B): 9822-9835. | 
| 11 | GUO K, ZHU H, CAO G. Effective image tampering localization via enhanced Transformer and co-attention fusion[C]// Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 4895-4899. | 
| 12 | ZHU H, CAO G, HUANG X. Progressive feedback-enhanced Transformer for image forgery localization[EB/OL]. (2023-11-15) [2023-12-01].. | 
| 13 | MAHDIAN B, SAIC S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10): 1497-1503. | 
| 14 | ZENG Y, ZHAO B, QIU S, et al. Toward effective image manipulation detection with proposal contrastive learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4703-4714. | 
| 15 | ZHOU P, HAN X, MORARIU V I, et al. Learning rich features for image manipulation detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1053-1061. | 
| 16 | SIOPI M, KORDOPATIS-ZILOS G, CHARITIDIS P, et al. A multi-stream fusion network for image splicing localization[C]// Proceedings of the 2023 International Conference on Multimedia Modeling, LNCS 13834. Cham: Springer, 2023: 611-622. | 
| 17 | HWANG H, HADDAD R A. Adaptive median filters: new algorithms and results[J]. IEEE Transactions on Image Processing, 1995, 4(4): 499-502. | 
| 18 | FU B, ZHAO X, LI Y, et al. A convolutional neural networks denoising approach for salt and pepper noise[J]. Multimedia Tools and Applications, 2019, 78(21): 30707-30721. | 
| 19 | TIAN C, XU Y, LI Z, et al. Attention-guided CNN for image denoising[J]. Neural Networks, 2020, 124: 117-129. | 
| 20 | TIAN C, ZHENG M, ZUO W, et al. A cross Transformer for image denoising[J]. Information Fusion, 2024, 102: No.102043. | 
| 21 | NIU J, CHENG J, TAN S. Image denoising via style disentanglement[EB/OL]. (2023-09-26) [2023-10-01].. | 
| 22 | DE CARVALHO T J, RIESS C, ANGELOPOULOU E, et al. Exposing digital image forgeries by illumination color classification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(7): 1182-1194. | 
| 23 | HSU Y F, CHANG S F. Detecting image splicing using geometry invariants and camera characteristics consistency[C]// Proceedings of the 2006 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2006: 549-552. | 
| 24 | LIU W, SHEN X, PUN C M, et al. Explicit visual prompting for low-level structure segmentations[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 19434-19445. | 
| 25 | LIU X, LIU Y, CHEN J, et al. PSCC-Net: progressive spatio-channel correlation network for image manipulation detection and localization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7505-7517. | 
| 26 | MAYER O, STAMM M C. Forensic similarity for digital images[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1331-1346. | 
| 27 | IAKOVIDOU C, ZAMPOGLOU M, PAPADOPOULOS S, et al. Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[J]. Journal of Visual Communication and Image Representation, 2018, 54: 155-170. | 
| 28 | BIANCHI T, DE ROSA A, PIVA A. Improved DCT coefficient analysis for forgery localization in JPEG images[C]// Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2011: 2444-2447. | 
| 29 | LYU S, PAN X, ZHANG X. Exposing region splicing forgeries with blind local noise estimation[J]. International Journal of Computer Vision, 2014, 110(2): 202-221. | 
| [1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. | 
| [2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. | 
| [3] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. | 
| [4] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. | 
| [5] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. | 
| [6] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. | 
| [7] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. | 
| [8] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. | 
| [9] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. | 
| [10] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. | 
| [11] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. | 
| [12] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. | 
| [13] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. | 
| [14] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. | 
| [15] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||