[1] ANDERSON B,MCGREW D. Machine learning for encrypted malware traffic classification:accounting for noisy labels and nonstationarity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:1723-1732. [2] 陈雪娇, 王攀, 俞家辉. 基于卷积神经网络的加密流量识别方法[J]. 南京邮电大学学报(自然科学版),2018,38(6):36-41. (CHEN X J,WANG P,YU J H. CNN based encrypted traffic identification method[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition),2018,38(6):36-41.) [3] WANG W,ZHU M,WANG J,et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway:IEEE,2017:43-48. [4] WANG Z. The applications of deep learning on traffic identification[EB/OL].[2020-07-03]. https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-TrafficIdentification-wp.pdf. [5] REZAEI S, LIU X. Deep learning for encrypted traffic classification:an overview[J]. IEEE Communications Magazine, 2019,57(5):76-81. [6] REZAEI S, KROENCKE B, LIU X. Large-scale mobile app identification using deep learning[J]. IEEE Access,2019,8:348-362. [7] ANDERSON B, MCGREW D. Identifying encrypted malware traffic with contextual flow data[C]//Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. New York:ACM, 2016:35-46. [8] LOTFOLLAHI M,JAFARI SIAVOSHANI M,SHIRALI HOSSEIN ZADE R,et al. Deep packet:a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing,2020,24(3):1999-2012. [9] 卓勤政. 基于深度学习的网络流量分析研究[D]. 南京:南京理工大学,2018:31-45.(ZHUO Q Z. Research on network traffic analysis based on deep learning[D]. Nanjing:Nanjing University of Science and Technology,2018:31-45.) [10] 马若龙. 基于卷积神经网络的未知和加密流量识别的研究与实现[D]. 北京:北京邮电大学,2018:39-45.(MA R L. Research and implementation of unknown and encrypted traffic identification based on convolutional neural network[D]. Beijing:Beijing University of Posts and Telecommunications, 2018:39-45.) [11] KUMANO Y,ATA S,NAKAMURA N,et al. Towards real-time processing for application identification of encrypted traffic[C]//Proceedings of the 2014 International Conference on Computing, Networking and Communications. Piscataway:IEEE, 2014:136-140. [12] 陈良臣, 高曙, 刘宝旭, 等. 网络加密流量识别研究进展及发展趋势[J]. 信息网络安全,2019,19(3):19-25.(CHEN L C, GAO S,LIU B X,et al. Research status and development trends on network encrypted traffic identi fi cation[J]. Netinfo Security, 2019,19(3):19-25.) [13] 潘吴斌, 程光, 郭晓军, 等. 网络加密流量识别研究综述及展望[J]. 通信学报,2016,37(9):154-167.(PAN W B,CHENG G, GUO X J,et al. Review and perspective on encrypted traffic identification research[J]. Journal on Communications,2016,37(9):154-167.) [14] DORFINGER P,PANHOLZER G,JOHN W. Entropy estimation for real-time encrypted traffic identification (short paper)[C]//Proceedings of the 2011 International Workshop on Traffic Monitoring and Analysis,LNCS 6613. Berlin:Springer,2011:164-171. [15] 傅建明, 黎琳, 郑锐, 等. 基于GAN的网络攻击检测研究综述[J]. 信息网络安全,2019,19(2):1-9.(FU J M,LI L,ZHENG R,et al. Survey of network attack detection based on GAN[J]. Netinfo Security,2019,19(2):1-9.) [16] 杨婧. SSH协议的研究与应用[J]. 计算机与数字工程,2011, 39(8):112-114.(YANG J. Study and application on secure shell protocol[J]. Computer and Digital Engineering,2011,39(8):112-114.) |