Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3666-3671.DOI: 10.11772/j.issn.1001-9081.2021010070
• Multimedia computing and computer simulation • Previous Articles Next Articles
Haiyong WANG1, Kaixin ZHANG2(
), Weizheng GUAN2
Received:2021-01-15
Revised:2021-03-29
Accepted:2021-04-06
Online:2021-04-15
Published:2021-12-10
Contact:
Kaixin ZHANG
About author:WANG Haiyong, born in 1979, Ph. D., associate research fellow. His research interests include computer network and security, information network.Supported by:通讯作者:
张开心
作者简介:王海勇(1979—),男,江苏连云港人,副研究员,博士,CCF会员,主要研究方向:计算机网络与安全、信息网络基金资助:CLC Number:
Haiyong WANG, Kaixin ZHANG, Weizheng GUAN. Single image super-resolution reconstruction method based on dense Inception[J]. Journal of Computer Applications, 2021, 41(12): 3666-3671.
王海勇, 张开心, 管维正. 基于密集Inception的单图像超分辨率重建方法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3666-3671.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010070
| 模型 | Set5 | Set14 | Urban100 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| SRCNN | 36.71 | 0.953 6 | 32.32 | 0.905 2 | 29.54 | 0.896 2 |
| ESPCN | 37.00 | 0.955 9 | 32.75 | 0.909 8 | 29.87 | 0.906 5 |
| FSRCNN | 37.06 | 0.955 4 | 32.76 | 0.907 8 | 29.88 | 0.902 4 |
| VDSR | 37.53 | 0.958 3 | 33.05 | 0.910 7 | 30.79 | 0.915 7 |
| DRCN | 37.63 | 0.958 4 | 33.06 | 0.910 8 | 30.76 | 0.914 7 |
| LapSRN | 37.52 | 0.958 1 | 33.08 | 0.910 9 | 30.41 | 0.911 2 |
| DRRN | 37.74 | 0.959 1 | 33.23 | 0.913 6 | 31.23 | 0.918 8 |
| MemNet | 37.78 | 0.959 7 | 33.28 | 0.914 2 | 31.31 | 0.919 5 |
| MSRN | 38.08 | 0.960 5 | 33.74 | 0.917 0 | 32.22 | 0.932 6 |
| 本文方法 | 37.97 | 0.960 3 | 33.50 | 0.916 5 | 31.88 | 0.925 8 |
Tab. 1 Comparison of PSNR/SSIM between proposed method and other methods at 2 magnification
| 模型 | Set5 | Set14 | Urban100 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| SRCNN | 36.71 | 0.953 6 | 32.32 | 0.905 2 | 29.54 | 0.896 2 |
| ESPCN | 37.00 | 0.955 9 | 32.75 | 0.909 8 | 29.87 | 0.906 5 |
| FSRCNN | 37.06 | 0.955 4 | 32.76 | 0.907 8 | 29.88 | 0.902 4 |
| VDSR | 37.53 | 0.958 3 | 33.05 | 0.910 7 | 30.79 | 0.915 7 |
| DRCN | 37.63 | 0.958 4 | 33.06 | 0.910 8 | 30.76 | 0.914 7 |
| LapSRN | 37.52 | 0.958 1 | 33.08 | 0.910 9 | 30.41 | 0.911 2 |
| DRRN | 37.74 | 0.959 1 | 33.23 | 0.913 6 | 31.23 | 0.918 8 |
| MemNet | 37.78 | 0.959 7 | 33.28 | 0.914 2 | 31.31 | 0.919 5 |
| MSRN | 38.08 | 0.960 5 | 33.74 | 0.917 0 | 32.22 | 0.932 6 |
| 本文方法 | 37.97 | 0.960 3 | 33.50 | 0.916 5 | 31.88 | 0.925 8 |
| 模型 | Set5 | Set14 | Urban100 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| SRCNN | 32.47 | 0.906 7 | 29.23 | 0.820 1 | 26.25 | 0.802 8 |
| ESPCN | 33.02 | 0.913 5 | 29.49 | 0.827 1 | 26.41 | 0.816 1 |
| FSRCNN | 33.20 | 0.914 9 | 29.54 | 0.827 7 | 26.48 | 0.817 5 |
| VDSR | 33.68 | 0.920 1 | 29.86 | 0.831 2 | 27.15 | 0.831 5 |
| DRCN | 33.85 | 0.921 5 | 29.89 | 0.831 7 | 27.16 | 0.831 1 |
| LapSRN | 33.82 | 0.920 7 | 29.89 | 0.830 4 | 27.07 | 0.829 8 |
| DRRN | 34.03 | 0.924 4 | 29.96 | 0.834 9 | 27.53 | 0.837 8 |
| MemNet | 34.09 | 0.924 8 | 30.00 | 0.835 0 | 27.56 | 0.837 6 |
| MSRN | 34.38 | 0.926 2 | 30.34 | 0.839 5 | 28.08 | 0.855 4 |
| 本文方法 | 34.32 | 0.926 7 | 30.27 | 0.840 9 | 28.02 | 0.849 3 |
Tab. 2 Comparison of PSNR/SSIM between proposed method and other methods at 3 magnification
| 模型 | Set5 | Set14 | Urban100 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| SRCNN | 32.47 | 0.906 7 | 29.23 | 0.820 1 | 26.25 | 0.802 8 |
| ESPCN | 33.02 | 0.913 5 | 29.49 | 0.827 1 | 26.41 | 0.816 1 |
| FSRCNN | 33.20 | 0.914 9 | 29.54 | 0.827 7 | 26.48 | 0.817 5 |
| VDSR | 33.68 | 0.920 1 | 29.86 | 0.831 2 | 27.15 | 0.831 5 |
| DRCN | 33.85 | 0.921 5 | 29.89 | 0.831 7 | 27.16 | 0.831 1 |
| LapSRN | 33.82 | 0.920 7 | 29.89 | 0.830 4 | 27.07 | 0.829 8 |
| DRRN | 34.03 | 0.924 4 | 29.96 | 0.834 9 | 27.53 | 0.837 8 |
| MemNet | 34.09 | 0.924 8 | 30.00 | 0.835 0 | 27.56 | 0.837 6 |
| MSRN | 34.38 | 0.926 2 | 30.34 | 0.839 5 | 28.08 | 0.855 4 |
| 本文方法 | 34.32 | 0.926 7 | 30.27 | 0.840 9 | 28.02 | 0.849 3 |
| 模型 | Set5 | Set14 | Urban100 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| SRCNN | 30.50 | 0.857 3 | 27.62 | 0.745 3 | 24.53 | 0.723 6 |
| ESPCN | 30.66 | 0.864 6 | 27.71 | 0.756 2 | 24.60 | 0.736 0 |
| FSRCNN | 30.73 | 0.860 1 | 27.71 | 0.748 8 | 24.62 | 0.727 2 |
| VDSR | 31.36 | 0.879 6 | 28.11 | 0.762 4 | 25.18 | 0.754 3 |
| DRCN | 31.56 | 0.881 0 | 28.15 | 0.762 7 | 25.15 | 0.753 0 |
| LapSRN | 31.54 | 0.881 1 | 28.19 | 0.763 5 | 25.21 | 0.756 4 |
| DRRN | 31.68 | 0.888 8 | 28.21 | 0.772 1 | 25.44 | 0.763 8 |
| MemNet | 31.74 | 0.889 3 | 28.26 | 0.772 3 | 25.50 | 0.763 0 |
| MSRN | 32.07 | 0.890 3 | 28.60 | 0.775 1 | 26.04 | 0.789 6 |
| 本文方法 | 32.04 | 0.893 2 | 28.52 | 0.780 5 | 25.92 | 0.780 9 |
Tab. 3 Comparison of PSNR/SSIM between proposed method and other methods at 4 magnification
| 模型 | Set5 | Set14 | Urban100 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| SRCNN | 30.50 | 0.857 3 | 27.62 | 0.745 3 | 24.53 | 0.723 6 |
| ESPCN | 30.66 | 0.864 6 | 27.71 | 0.756 2 | 24.60 | 0.736 0 |
| FSRCNN | 30.73 | 0.860 1 | 27.71 | 0.748 8 | 24.62 | 0.727 2 |
| VDSR | 31.36 | 0.879 6 | 28.11 | 0.762 4 | 25.18 | 0.754 3 |
| DRCN | 31.56 | 0.881 0 | 28.15 | 0.762 7 | 25.15 | 0.753 0 |
| LapSRN | 31.54 | 0.881 1 | 28.19 | 0.763 5 | 25.21 | 0.756 4 |
| DRRN | 31.68 | 0.888 8 | 28.21 | 0.772 1 | 25.44 | 0.763 8 |
| MemNet | 31.74 | 0.889 3 | 28.26 | 0.772 3 | 25.50 | 0.763 0 |
| MSRN | 32.07 | 0.890 3 | 28.60 | 0.775 1 | 26.04 | 0.789 6 |
| 本文方法 | 32.04 | 0.893 2 | 28.52 | 0.780 5 | 25.92 | 0.780 9 |
| 模型 | 参数量 | 平均训练时间/s | SSIM |
|---|---|---|---|
| SRCNN | 0.057×106 | 0.540 | 0.906 7 |
| ESPCN | 0.020×106 | 0.410 | 0.913 5 |
| FSRCNN | 0.012×106 | 0.360 | 0.914 9 |
| VDSR | 0.665×106 | 2.900 | 0.920 1 |
| DRCN | 1.775×106 | 5.800 | 0.921 5 |
| LapSRN | 0.812×106 | 0.077 | 0.920 7 |
| DRRN | 0.297×106 | 1.740 | 0.924 4 |
| MemNet | 0.677×106 | 0.037 | 0.924 8 |
| MSRN | 6.300×106 | 0.007 | 0.926 2 |
| 本文方法 | 1.400×106 | 0.003 | 0.926 7 |
Tab. 4 Comparison of parameters, average training time and SSIM of different methods
| 模型 | 参数量 | 平均训练时间/s | SSIM |
|---|---|---|---|
| SRCNN | 0.057×106 | 0.540 | 0.906 7 |
| ESPCN | 0.020×106 | 0.410 | 0.913 5 |
| FSRCNN | 0.012×106 | 0.360 | 0.914 9 |
| VDSR | 0.665×106 | 2.900 | 0.920 1 |
| DRCN | 1.775×106 | 5.800 | 0.921 5 |
| LapSRN | 0.812×106 | 0.077 | 0.920 7 |
| DRRN | 0.297×106 | 1.740 | 0.924 4 |
| MemNet | 0.677×106 | 0.037 | 0.924 8 |
| MSRN | 6.300×106 | 0.007 | 0.926 2 |
| 本文方法 | 1.400×106 | 0.003 | 0.926 7 |
| 1 | 曾接贤,倪申龙.改进的卷积神经网络单幅图像超分辨率重建[J].计算机工程与应用,2019,55(13):1-7. |
| ZENG J X, NI S L. Improved super-resolution reconstruction of single image based on convolution neural network [J]. Computer Engineering and Applications, 2019, 55(13): 1-7. | |
| 2 | CHEN C, QI F. Single image super-resolution using deep CNN with dense skip connections and inception-ResNet [C]// Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education. Piscataway: IEEE, 2018: 999-1003. 10.1109/itme.2018.00222 |
| 3 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
| 4 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
| 5 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning [C]// Proceedings of the 2017 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4278-4284. |
| 6 | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS8692. Cham: Springer, 2014: 184-199. |
| 7 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. 10.1109/cvpr.2016.182 |
| 8 | DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9906. Cham: Springer, 2016: 391-407. |
| 9 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645. 10.1109/cvpr.2016.181 |
| 10 | TONG T, LI G, LIU X J, et al. Image super-resolution using dense skip connections [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4809-4817. 10.1109/iccv.2017.514 |
| 11 | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262 |
| 12 | TANG Z M, LI S H, LUO L K, et al. Image super-resolution via simplified dense network with non-degenerate layers [J]. IEEE Access, 2019, 7: 24775-24787. 10.1109/access.2019.2898846 |
| 13 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 2015 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
| 14 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
| 15 | LI J C, FANG F M, MEI K F, et al. Multi-scale residual network for image super-resolution [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11212. Cham: Springer, 2018: 527-542. |
| 16 | QIN J Y, SUN X F, YAN Y T, et al. Multi-resolution space-attended residual dense network for single image super-resolution [J]. IEEE Access, 2020, 8: 40499-40511. 10.1109/access.2020.2976478 |
| 17 | TIMOFTE R, AGUSTSSON E, GOOL L VAN, et al. NTIRE 2017 challenge on single image super-resolution: methods and results [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1110-1121. |
| 18 | BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding [C]// Proceedings of the 2012 British Machine Vision Conference. Durham: BMVA Press, 2012: Article No.135. 10.5244/c.26.135 |
| 19 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations [C]// Proceedings of the 2010 7th International Conference on Curves and Surfaces, LNCS6920. Berlin: Springer, 2010: 711-730. |
| 20 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206. 10.1109/cvpr.2015.7299156 |
| 21 | KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. [2020-12-22]. . |
| 22 | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. 10.1109/cvpr.2016.207 |
| 23 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. 10.1109/cvpr.2017.618 |
| 24 | TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798. 10.1109/cvpr.2017.298 |
| 25 | TAI Y, YANG J, LIU X M, et al. MemNet: a persistent memory network for image restoration [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4549-4557. 10.1109/iccv.2017.486 |
| [1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
| [2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
| [3] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
| [4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
| [5] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
| [6] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
| [7] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
| [8] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
| [9] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
| [10] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
| [11] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
| [12] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
| [13] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
| [14] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
| [15] | Rui ZHANG, Siqi SONG, Jing HU, Yongmei ZHANG, Yanfeng CHAI. Performance evaluation of industry-university-research based on statistics and adaptive ParNet [J]. Journal of Computer Applications, 2024, 44(2): 628-637. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||