Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 302-309.DOI: 10.11772/j.issn.1001-9081.2021020258
• Frontier and comprehensive applications • Previous Articles Next Articles
Shuang DENG(
), Xiaohai HE, Linbo QING, Honggang CHEN, Qizhi TENG
Received:2021-02-22
Revised:2021-04-28
Accepted:2021-04-29
Online:2021-05-12
Published:2022-01-10
Contact:
Shuang DENG
About author:DENG Shuang, born in 1995, M. S. candidate. Her research interests include image processing, pattern recognition, artificial intelligence.Supported by:通讯作者:
邓爽
作者简介:邓爽 (1995—),女,四川绵阳人,硕士研究生,主要研究方向:图像处理、模式识别、人工智能基金资助:CLC Number:
Shuang DENG, Xiaohai HE, Linbo QING, Honggang CHEN, Qizhi TENG. Weakly supervised fine-grained classification method of Alzheimer’s disease based on improved visual geometry group network[J]. Journal of Computer Applications, 2022, 42(1): 302-309.
邓爽, 何小海, 卿粼波, 陈洪刚, 滕奇志. 基于改进VGG网络的弱监督细粒度阿尔兹海默症分类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 302-309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020258
| 卷积层 | 通道数 | 网络参数 |
|---|---|---|
| Conv1 | 64 | kernel: |
| MaxPool1 | 64 | kernel: |
| Conv2 | 128 | kernel: |
| MaxPool2 | 128 | kernel: |
| Conv3 | 256 | kernel: |
| MaxPool3 | 256 | kernel: |
| Conv4 | 512 | kernel: |
| MaxPool4 | 512 | kernel: |
| Conv5 | 512 | kernel: |
| MaxPool5 | 512 | kernel: |
Tab.1 VGG19 network parameters
| 卷积层 | 通道数 | 网络参数 |
|---|---|---|
| Conv1 | 64 | kernel: |
| MaxPool1 | 64 | kernel: |
| Conv2 | 128 | kernel: |
| MaxPool2 | 128 | kernel: |
| Conv3 | 256 | kernel: |
| MaxPool3 | 256 | kernel: |
| Conv4 | 512 | kernel: |
| MaxPool4 | 512 | kernel: |
| Conv5 | 512 | kernel: |
| MaxPool5 | 512 | kernel: |
| 模型 | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| VGG19 | 92.20 | 92.49 | 91.87 |
| ResNet101 | 91.90 | 92.81 | 90.93 |
Tab.2 Performance comparison of traditional classification networks
| 模型 | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| VGG19 | 92.20 | 92.49 | 91.87 |
| ResNet101 | 91.90 | 92.81 | 90.93 |
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN(ResNet101) | 95.10 | 97.40 | 92.81 |
| WSDAN (Inception) | 94.80 | 95.60 | 94.06 |
Tab.3 WSDAN basic network models with different feature extraction networks
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN(ResNet101) | 95.10 | 97.40 | 92.81 |
| WSDAN (Inception) | 94.80 | 95.60 | 94.06 |
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN_d(VGG19) | 95.90 | 96.24 | 93.12 |
| WSDAN(ResNet101) | 95.10 | 97.40 | 92.81 |
| WSDAN_d(ResNet101) | 95.40 | 96.24 | 93.10 |
| WSDAN (Inception) | 94.80 | 95.60 | 94.06 |
| WSDAN_d (Inception) | 95.90 | 95.93 | 95.92 |
Tab.4 Comparison of training results of models with enhanced images and results of basic network models
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN_d(VGG19) | 95.90 | 96.24 | 93.12 |
| WSDAN(ResNet101) | 95.10 | 97.40 | 92.81 |
| WSDAN_d(ResNet101) | 95.40 | 96.24 | 93.10 |
| WSDAN (Inception) | 94.80 | 95.60 | 94.06 |
| WSDAN_d (Inception) | 95.90 | 95.93 | 95.92 |
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN(改进VGG19) | 95.00 | 95.57 | 95.62 |
Tab.5 Comparison of model with improved VGG19 network and model with basic VGG19 network
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN(改进VGG19) | 95.00 | 95.57 | 95.62 |
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(改进_1) | 92.60 | 93.12 | 92.18 |
| WSDAN(改进_2) | 95.40 | 93.75 | 97.19 |
| WSDAN(改进_3) | 96.40 | 97.81 | 94.99 |
| WSDAN(改进_4) | 87.03 | 92.49 | 81.56 |
Tab.6 Comparison of adding different convolutional layers
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(改进_1) | 92.60 | 93.12 | 92.18 |
| WSDAN(改进_2) | 95.40 | 93.75 | 97.19 |
| WSDAN(改进_3) | 96.40 | 97.81 | 94.99 |
| WSDAN(改进_4) | 87.03 | 92.49 | 81.56 |
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN_d(改进VGG19) | 96.40 | 97.81 | 94.99 |
Tab.7 Comparison of model with enhanced images combining improved network and basic network model
| 模型(特征网络) | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| WSDAN(VGG19) | 94.30 | 95.90 | 92.80 |
| WSDAN_d(改进VGG19) | 96.40 | 97.81 | 94.99 |
| 模型 | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| VGG19 | 92.20 | 92.49 | 91.87 |
| ResNet101 | 91.90 | 92.81 | 90.93 |
| NTS_Net | 92.30 | 94.69 | 90.00 |
| WSDAN | 94.30 | 95.90 | 92.80 |
| 本文方法 | 96.40 | 97.81 | 94.99 |
Tab. 8 Comparison of indicators of different classification networks
| 模型 | 准确性 | 敏感性 | 特异性 |
|---|---|---|---|
| VGG19 | 92.20 | 92.49 | 91.87 |
| ResNet101 | 91.90 | 92.81 | 90.93 |
| NTS_Net | 92.30 | 94.69 | 90.00 |
| WSDAN | 94.30 | 95.90 | 92.80 |
| 本文方法 | 96.40 | 97.81 | 94.99 |
| 1 | 叶玉如. 老年痴呆症——现代脑科学和医学研究面临的严峻挑战[J]. 生命科学, 2014, 26(1):1. (YE Y R. Alzheimer’s disease: a tough challenge faced by modern brain science and medical research[J]. Chinese Bulletin of Life Science, 2014, 26(1):1.) |
| 2 | BROOKMEYER R, JOHNSON E, ZIEGLER-GRAHAM K, et al. Forecasting the global burden of Alzheimer’s disease[J]. Alzheimer’s and Dementia, 2007, 3(3):186-191. 10.1016/j.jalz.2007.04.381 |
| 3 | 林伟铭,高钦泉,杜民. 卷积神经网络诊断阿尔兹海默症的方法[J].计算机应用, 2017, 37(12):3504-3508. 10.11772/j.issn.1001-9081.2017.12.3504 |
| LIN W M, GAO Q Q, DU M. Convolutional neural network based method for the diagnosis of Alzheimer’s disease[J]. Journal of Computer Applications, 2017, 37(12):3504-3508. 10.11772/j.issn.1001-9081.2017.12.3504 | |
| 4 | YANG Z, LUO T G, WANG D, et al. Learning to navigate for fine-grained classification[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11218. Chan: Springer, 2018:420-435. |
| 5 | LAM M, MAHASSENI B, TODOROVIC S. Fine-grained recognition as HSnet search for informative image parts[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:6497-6506. 10.1109/cvpr.2017.688 |
| 6 | 边小勇,江沛龄,赵敏,等. 基于多分支神经网络模型的弱监督细粒度图像分类方法[J]. 计算机应用, 2020, 40(5):1295-1300. |
| BIAN X Y, JIANG P L, ZHAO M, et al. Multi-branch neural network model based weakly supervised fine-grained image classification method[J]. Journal of Computer Applications, 2020, 40(5):1295-1300. | |
| 7 | 陆鑫伟,余鹏飞,李海燕,等. 基于注意力自身线性融合的弱监督细粒度图像分类算法[J]. 计算机应用, 2021, 41(5): 1319-1325. 10.1109/iaeac50856.2021.9390994 |
| LU X W, YU P F, LI H Y, et al. Weakly supervised fine-grained image classification algorithm based on attention-attention bilinear pooling[J]. Journal of Computer Applications , 2021, 41(5): 1319-1325. 10.1109/iaeac50856.2021.9390994 | |
| 8 | XIAO T J, XU Y C, YANG K Y, et al. The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015:842-850. 10.1109/cvpr.2015.7298685 |
| 9 | JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. 10.5244/c.28.88 |
| 10 | FU J L, ZHENG H L, MEI T, et al. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:4476-4484. 10.1109/cvpr.2017.476 |
| 11 | HU T, QI H G, HUANG Q M, et al. See better before looking closer: weakly supervised data augmentation network for fine-grained visual classification[EB/OL]. (2019-03-23) [2021-04-19].. 10.1109/icme46284.2020.9102790 |
| 12 | 丁文谦,余鹏飞,李海燕,等. 基于Xception网络的弱监督细粒度图像分类[J/OL]. 计算机工程与应用. (2020-12-25) [2021-01-25]., |
| YU P F, LI H Y, et al. Weakly supervised fine-grained image classification based on Xception network[J/OL]. Computer Engineering and Applications. (2020-12-25) [2021-01-25]. | |
| 13 | 李振东,钟勇,陈蔓,等. 角度余量损失和中心损失联合的深度人脸识别[J]. 计算机应用, 2019, 39(S2):55-58. 10.1109/icsidp47821.2019.9173230 |
| LI Z D, ZHONG Y, CHEN M, et al. Deep face recognition combined with angular margin loss and center loss[J]. Journal of Computer Applications, 2019, 39(S2):55-58. 10.1109/icsidp47821.2019.9173230 | |
| 14 | 朱学玲,刘丽. 图像增强中的平滑滤波技术[J]. 科技信息, 2012(32):512. 10.3969/j.issn.1001-9960.2012.32.464 |
| ZHU X L, LIU L. Smooth filtering technology in image enhancement[J]. Science and Technology Information, 2012(32):512. 10.3969/j.issn.1001-9960.2012.32.464 | |
| 15 | 郭红伟,余江,朱家兴,等. 基于局部直方图的加权均值滤波器[J]. 计算机应用, 2010, 30(11):3019-3021. 10.3724/sp.j.1087.2010.03019 |
| GUO H W, YU J, ZHU J X, et al. Weighted mean filter based on local histogram[J]. Journal of Computer Applications, 2010, 30(11):3019-3021. 10.3724/sp.j.1087.2010.03019 | |
| 16 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-01-19].. 10.5244/c.28.6 |
| 17 | 颜晨欢,李白,章超杰,等. 一种基于VGG的手写字母识别算法[J]. 信息技术与信息化, 2020(12):63-65. 10.3969/j.issn.1672-9528.2020.12.019 |
| YAN C H, LI B, ZHANG C J, et al. A handwritten letter recognition algorithm based on VGG[J]. Information Technology and Informatization, 2020(12):63-65. 10.3969/j.issn.1672-9528.2020.12.019 | |
| 18 | 王羽徵,程远,毕海,等. 基于深度学习VGG网络的海洋单细胞藻类识别算法研究[J]. 大连海洋大学学报, 2021, 36(2):334-339. |
| WANG Y Z, CHENG Y, BI H, et al. Recognition algorithm of marine single-cell algae based on deep learning VGG network[J]. Journal of Dalian Ocean University, 2021, 36(2):334-339. | |
| 19 | 陈津徽,张元良,尹泽睿. 基于改进的VGG19网络的面部表情识别[J]. 电脑知识与技术, 2020, 16(29):187-188. 10.1117/12.2574468 |
| CHEN J H, ZHANG Y L, YIN Z R. Facial expression recognition based on improved VGG19 network[J]. Computer Knowledge and Technology, 2020, 16(29):187-188. 10.1117/12.2574468 | |
| 20 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:618-626. 10.1109/iccv.2017.74 |
| 21 | CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018:839-847. 10.1109/wacv.2018.00097 |
| 22 | 陆小玲,吴海锋,曾玉,等. 3D迁移网络的阿尔茨海默症分类研究[J]. 计算机工程与应用, 2021, 57(16):253-262. 10.1109/icccr49711.2021.9349393 |
| LU X L, WU H F, ZENG Y, et al. 3D transfer learning network for classification of Alzheimer’s disease[J]. Computer Engineering and Applications, 2021, 57(16):253-262. 10.1109/icccr49711.2021.9349393 | |
| 23 | 张柏雯,林岚,吴水才. 基于AlexNet模型的AD分类[J]. 北京工业大学学报, 2020, 46(1):68-74. 10.11936/bjutxb2018070029 |
| ZHANG B W, LIN L, WU S C. Efficient Alzheimer’s disease classification based on AlexNet model[J]. Journal of Beijing University of Technology, 2020, 46(1):68-74. 10.11936/bjutxb2018070029 |
| [1] | Zimeng ZHU, Zhixin LI, Zhan HUAN, Ying CHEN, Jiuzhen LIANG. Weakly supervised video anomaly detection based on triplet-centered guidance [J]. Journal of Computer Applications, 2024, 44(5): 1452-1457. |
| [2] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
| [3] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
| [4] | Andi GUO, Zhen JIA, Tianrui LI. High-precision entity and relation extraction in medical domain based on pseudo-entity data augmentation [J]. Journal of Computer Applications, 2024, 44(2): 393-402. |
| [5] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
| [6] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
| [7] | Qiang WANG, Xiaoming HUANG, Qiang TONG, Xiulei LIU. Weakly supervised salient object detection algorithm based on bounding box annotation [J]. Journal of Computer Applications, 2023, 43(6): 1910-1918. |
| [8] | Yimin CAO, Lei CAI, Jingyang GAO. Gene data generation method based on generative adversarial network [J]. Journal of Computer Applications, 2022, 42(3): 783-790. |
| [9] | Qiujie SUN, Jinggui LIANG, Si LI. Chinese grammatical error correction model based on bidirectional and auto-regressive transformers noiser [J]. Journal of Computer Applications, 2022, 42(3): 860-866. |
| [10] | Cong HU, Gang HUA. Weakly supervised action localization method based on attention mechanism [J]. Journal of Computer Applications, 2022, 42(3): 960-967. |
| [11] | Yu PENG, Yaolian SONG, Jun YANG. Motor imagery electroencephalography classification based on data augmentation [J]. Journal of Computer Applications, 2022, 42(11): 3625-3632. |
| [12] | Ping LUO, Ling DING, Xue YANG, Yang XIANG. Chinese event detection based on data augmentation and weakly supervised adversarial training [J]. Journal of Computer Applications, 2022, 42(10): 2990-2995. |
| [13] | Hongfei JIA, Xi LIU, Yu WANG, Hongbing XIAO, Suxia XING. Application of 3DPCANet in image classification of functional magnetic resonance imaging for Alzheimer’s disease [J]. Journal of Computer Applications, 2022, 42(1): 310-315. |
| [14] | JIA Chengxun, LAI Hua, YU Zhengtao, WEN Yonghua, YU Zhiqiang. Chinese-Vietnamese pseudo-parallel corpus generation based on monolingual language model [J]. Journal of Computer Applications, 2021, 41(6): 1652-1658. |
| [15] | GAN Lan, SHEN Hongfei, WANG Yao, ZHANG Yuejin. Data augmentation method based on improved deep convolutional generative adversarial networks [J]. Journal of Computer Applications, 2021, 41(5): 1305-1313. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||