Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 310-315.DOI: 10.11772/j.issn.1001-9081.2021010132
• Frontier and comprehensive applications • Previous Articles Next Articles
Hongfei JIA, Xi LIU, Yu WANG(), Hongbing XIAO, Suxia XING
Received:
2021-01-25
Revised:
2020-05-31
Accepted:
2020-06-10
Online:
2021-07-14
Published:
2022-01-10
Contact:
Yu WANG
About author:
JIA Hongfei, born in 1997, M. S. candidate. His research interests include image processing, pattern recognition.Supported by:
通讯作者:
王瑜
作者简介:
贾洪飞(1997—),男,吉林通化人,硕士研究生,主要研究方向:图像处理、模式识别基金资助:
CLC Number:
Hongfei JIA, Xi LIU, Yu WANG, Hongbing XIAO, Suxia XING. Application of 3DPCANet in image classification of functional magnetic resonance imaging for Alzheimer’s disease[J]. Journal of Computer Applications, 2022, 42(1): 310-315.
贾洪飞, 刘茜, 王瑜, 肖洪兵, 邢素霞. 3DPCANet在阿尔茨海默症功能磁共振成像图像分类中的应用[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 310-315.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010132
fMRI | 人数 | 男/女 | 年龄/岁 | 训练集 | 验证集 |
---|---|---|---|---|---|
AD | 34 | 18/16 | 57~88 | 26 | 8 |
EMCI | 57 | 34/23 | 57~90 | 44 | 13 |
LMCI | 35 | 14/21 | 58~88 | 28 | 7 |
NC | 50 | 28/22 | 66~91 | 40 | 10 |
SMD | 26 | 14/12 | 65~83 | 21 | 5 |
Tab. 1 Statistical analysis of subject information
fMRI | 人数 | 男/女 | 年龄/岁 | 训练集 | 验证集 |
---|---|---|---|---|---|
AD | 34 | 18/16 | 57~88 | 26 | 8 |
EMCI | 57 | 34/23 | 57~90 | 44 | 13 |
LMCI | 35 | 14/21 | 58~88 | 28 | 7 |
NC | 50 | 28/22 | 66~91 | 40 | 10 |
SMD | 26 | 14/12 | 65~83 | 21 | 5 |
方法 | 评测指标 | NC vs.AD | SMD vs.LMCI | NC vs.EMCI | LMCI vs.AD |
---|---|---|---|---|---|
文献[ | ACC | 83.95 | — | 80.15 (NC vs MCI) | 82.53 (MCI vs AD) |
AUC | 88.42 | — | 81.74 (NC vs MCI) | 81.24 (MCI vs AD) | |
文献[ | ACC | 78.95 | — | — | — |
SEN | 81.25 | — | — | — | |
SPE | 77.27 | — | — | — | |
3DPCANet+SVM+ALFF | ACC | 87.78 | 91.80 | 81.82 | 86.67 |
SEN | 96.00 | 91.43 | 80.00 | 88.57 | |
SPE | 77.50 | 92.67 | 84.00 | 85.00 | |
F1 | 90.05 | 92.72 | 82.62 | 85.35 | |
AUC | 88.50 | 88.09 | 78.17 | 83.93 | |
改进3DPCANet+SVM +ALFF | ACC | 88.89 | 91.80 | 87.27 | 89.33 |
SEN | 86.00 | 94.28 | 80.00 | 85.71 | |
SPE | 92.50 | 88.67 | 96.00 | 92.50 | |
F1 | 89.57 | 92.92 | 87.21 | 88.08 | |
AUC | 82.25 | 90.86 | 89.83 | 83.57 |
Tab.2 Comparison of experimental results of different methods
方法 | 评测指标 | NC vs.AD | SMD vs.LMCI | NC vs.EMCI | LMCI vs.AD |
---|---|---|---|---|---|
文献[ | ACC | 83.95 | — | 80.15 (NC vs MCI) | 82.53 (MCI vs AD) |
AUC | 88.42 | — | 81.74 (NC vs MCI) | 81.24 (MCI vs AD) | |
文献[ | ACC | 78.95 | — | — | — |
SEN | 81.25 | — | — | — | |
SPE | 77.27 | — | — | — | |
3DPCANet+SVM+ALFF | ACC | 87.78 | 91.80 | 81.82 | 86.67 |
SEN | 96.00 | 91.43 | 80.00 | 88.57 | |
SPE | 77.50 | 92.67 | 84.00 | 85.00 | |
F1 | 90.05 | 92.72 | 82.62 | 85.35 | |
AUC | 88.50 | 88.09 | 78.17 | 83.93 | |
改进3DPCANet+SVM +ALFF | ACC | 88.89 | 91.80 | 87.27 | 89.33 |
SEN | 86.00 | 94.28 | 80.00 | 85.71 | |
SPE | 92.50 | 88.67 | 96.00 | 92.50 | |
F1 | 89.57 | 92.92 | 87.21 | 88.08 | |
AUC | 82.25 | 90.86 | 89.83 | 83.57 |
评测 指标 | NC vs. SMD | SMD vs. EMCI | SMD vs. AD | EMCI vs. LMCI | EMCI vs. AD |
---|---|---|---|---|---|
ACC | 89.50 | 88.43 | 92.42 | 84.21 | 88.42 |
SEN | 94.00 | 91.67 | 88.00 | 88.33 | 90.00 |
SPE | 80.67 | 81.33 | 95.00 | 77.14 | 85.71 |
F1 | 90.10 | 91.65 | 89.46 | 87.44 | 90.79 |
AUC | 89.53 | 79.55 | 86.83 | 80.95 | 85.48 |
Tab.3 Classification of patients with different stages of AD
评测 指标 | NC vs. SMD | SMD vs. EMCI | SMD vs. AD | EMCI vs. LMCI | EMCI vs. AD |
---|---|---|---|---|---|
ACC | 89.50 | 88.43 | 92.42 | 84.21 | 88.42 |
SEN | 94.00 | 91.67 | 88.00 | 88.33 | 90.00 |
SPE | 80.67 | 81.33 | 95.00 | 77.14 | 85.71 |
F1 | 90.10 | 91.65 | 89.46 | 87.44 | 90.79 |
AUC | 89.53 | 79.55 | 86.83 | 80.95 | 85.48 |
1 | 王全英,梁景宏,贾瑞霞,等. 2020—2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1):289-298. |
WANG Q Y, LIANG J H, JIA R X, et al. Alzheimer disease in China (2015—2050) estimated using the 1% population sampling survey in 2015 [J]. Alzheimer’s Disease and Related Diseases, 2019, 2(1): 289-298. | |
2 | WEINER M W, VEITCH D P, AISEN P S, et al. Recent publications from the Alzheimer’s disease neuroimaging initiative: reviewing progress toward improved AD clinical trials[J]. Alzheimer’s and Dementia, 2017, 13(4): e1-e85. 10.1016/j.jalz.2016.11.007 |
3 | DeYOE E A, BANDETTINI P, NEITZ J, et al. Functional Magnetic Resonance Imaging (FMRI) of the human brain[J]. Journal of Neuroscience Methods, 1994, 54(2): 171-187. 10.1016/0165-0270(94)90191-0 |
4 | LAUTERBUR P C. Image formation by induced local interactions: examples employing nuclear magnetic resonance[J]. Nature, 1973, 242(5394): 190-191. 10.1038/242190a0 |
5 | GOLBABAEI S, VAHID A, HATAMI J, et al. Classification of Alzheimer’s disease and mild cognitive impairment: machine learning applied to rs-fMRI brain graphs[C]// Proceedings of the 23rd Iranian Conference on Biomedical Engineering and the 1st International Iranian Conference on Biomedical Engineering. Piscataway: IEEE, 2016: 35-40. 10.1109/icbme.2016.7890925 |
6 | KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory[J]. Clinical Neurophysiology, 2015, 126(11): 2132-2141. 10.1016/j.clinph.2015.02.060 |
7 | SHI Y H, ZENG W M, DENG J, et al. The identification of Alzheimer’s disease using functional connectivity between activity voxels in resting-state fMRI data[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8: No.1400211. 10.1109/jtehm.2020.2985022 |
8 | GUI R Z, CHEN T J, NIE H. Classification of task-state fMRI data based on circle-EMD and machine learning[J]. Computational Intelligence and Neuroscience, 2020, 2020: No.791294. 10.1155/2020/7691294 |
9 | 周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J]. 中国医学物理学杂志, 2018, 35(4):404-409. 10.3969/j.issn.1005-202X.2018.04.007 |
ZHOU Q, WANG Y, XIAO H B, et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J]. Chinese Journal of Medical Physics, 2018, 35(4): 404-409. 10.3969/j.issn.1005-202X.2018.04.007 | |
10 | 李长胜,王瑜,肖洪兵,等. KPCA和Adaboost算法在阿尔茨海默症功能磁共振影像分类中的应用[J]. 中国医学物理学杂志, 2019, 36(7):784-788. 10.3969/j.issn.1005-202X.2019.07.008 |
LI C S, WANG Y, XIAO H B, et al. Application of KPCA and Adaboost algorithm in the classification of functional magnetic resonance images of Alzheimer’s disease[J]. Chinese Journal of Medical Physics, 2019, 36(7): 784-788. 10.3969/j.issn.1005-202X.2019.07.008 | |
11 | HOSSEINI-ASL E, KEYNTON R, El-BAZ A. Alzheimer’s disease diagnostics by adaptation of 3D convolutional network[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 126-130. 10.1109/icip.2016.7532332 |
12 | LIAN C F, LIU M X, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4): 880-893. 10.1109/tpami.2018.2889096 |
13 | HOSSEINI ASL E, GHAZAL M, MAHMOUD A. Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network[J]. Frontiers in Bioscience-Landmark, 2018, 23(3): 584-596. |
14 | LAO H, ZHANG X, TANG Y, et al. Alzheimer’s disease diagnosis based on the visual attention model and equal-distance ring shape context features[J]. IET Image Processing, 2021,15(4):1-12. |
15 | JAIN R, JAIN N, AGGARWAL A, et al. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images[J]. Cognitive Systems Research, 2019, 57: 147-159. 10.1016/j.cogsys.2018.12.015 |
16 | ZHANG F, LI Z Z, ZHANG B Y, et al. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease[J]. Neurocomputing, 2019, 361: 185-195. 10.1016/j.neucom.2019.04.093 |
17 | CHAN T H, JIA K, GAO S H, et al. PCANet: a simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5017-5032. 10.1109/tip.2015.2475625 |
18 | 李书通,肖斌,李伟生,等. 基于3D-PCANet的阿尔兹海默病辅助诊断[J]. 计算机科学, 2018, 45(6A): 140-142, 156. 10.11896/j.issn.1002-137X.2018.Z6.029 |
LI S T, XIAO B, LI W S, et al. Diagnosis of Alzheimer’s disease based on 3D-PCANet[J]. Computer Science, 2018, 45(6A): 140-142, 156. 10.11896/j.issn.1002-137X.2018.Z6.029 | |
19 | JU R H, HU C H, ZHOU P, et al. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(2): 244-257. 10.1109/tcbb.2017.2776910 |
20 | PERAZA L R, COLLOBY S J, DEBOYS L, et al. Regional functional synchronizations in dementia with Lewy bodies and Alzheimer’s disease[J]. International Psychogeriatrics, 2016, 28(7): 1143-1151. 10.1017/s1041610216000429 |
21 | JIANG L L, ZUO X N. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome[J]. The Neuroscientist, 2016, 22(5): 486-505. 10.1177/1073858415595004 |
22 | ZANG Y F, HE Y, ZHU C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain and Development, 2007, 29(2): 83-91. 10.1016/j.braindev.2006.07.002 |
23 | YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. 10.1007/s12021-016-9299-4 |
24 | DAI Z J, YAN C G, WANG Z Q, et al. Discriminative analysis of early Alzheimer’s disease using Multi-modal imaging and Multi-level characterization with Multi-classifier (M3)[J]. NeuroImage, 2012, 59(3): 2187-2195. 10.1016/j.neuroimage.2011.10.003 |
[1] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[2] | Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network [J]. Journal of Computer Applications, 2024, 44(12): 3949-3957. |
[3] | Enbao QIAO, Xiangyang GAO, Jun CHENG. Self-recovery adaptive Monte Carlo localization algorithm based on support vector machine [J]. Journal of Computer Applications, 2024, 44(10): 3246-3251. |
[4] | Xueyu HUANG, Huaiyu HE, Huimin LIN, Jinshui CHEN. Classification and recognition method of copper alloy metallograph based on feature aggregation [J]. Journal of Computer Applications, 2023, 43(8): 2593-2601. |
[5] | Lei YANG, Hongdong ZHAO, Kuaikuai YU. End-to-end speech emotion recognition based on multi-head attention [J]. Journal of Computer Applications, 2022, 42(6): 1869-1875. |
[6] | Zhen QU, Kunting LI, Zhixi FENG. Remote sensing image scene classification based on effective channel attention [J]. Journal of Computer Applications, 2022, 42(5): 1431-1439. |
[7] | Guifang QIAO, Shouming HOU, Yanyan LIU. Facial expression recognition algorithm based on combination of improved convolutional neural network and support vector machine [J]. Journal of Computer Applications, 2022, 42(4): 1253-1259. |
[8] | Wang TAN, Yi LI. Synthesis of loop bound functions for loop programs [J]. Journal of Computer Applications, 2022, 42(2): 565-573. |
[9] | Qian GE, Guangbin ZHANG, Xiaofeng ZHANG. Automatic feature selection algorithm based on interaction of ReliefF with maximum information coefficient and SVM [J]. Journal of Computer Applications, 2022, 42(10): 3046-3053. |
[10] | Shuang DENG, Xiaohai HE, Linbo QING, Honggang CHEN, Qizhi TENG. Weakly supervised fine-grained classification method of Alzheimer’s disease based on improved visual geometry group network [J]. Journal of Computer Applications, 2022, 42(1): 302-309. |
[11] | ZHANG Xiaofei, YANG Yang, HUANG Jiajin, ZHONG Ning. Degree centrality based method for cognitive feature selection [J]. Journal of Computer Applications, 2021, 41(9): 2767-2772. |
[12] | ZHU Cheng, ZHAO Xiaoqi, ZHAO Liping, JIAO Yuhong, ZHU Yafei, CHENG Jianying, ZHOU Wei, TAN Ying. Classification of functional magnetic resonance imaging data based on semi-supervised feature selection by spectral clustering [J]. Journal of Computer Applications, 2021, 41(8): 2288-2293. |
[13] | JIA Heming, JIANG Zichao, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on improved spotted hyena optimizer algorithm [J]. Journal of Computer Applications, 2021, 41(5): 1290-1298. |
[14] | YUAN Qianqian, DENG Hongmin, WANG Xiaohang. Citrus disease and insect pest area segmentation based on superpixel fast fuzzy C-means clustering and support vector machine [J]. Journal of Computer Applications, 2021, 41(2): 563-570. |
[15] | Hongliang CAO, Ying ZHANG, Bin WU, Fanyu LI, Xubo NA. Prediction method of liver transplantation complications based on transfer component analysis and support vector machine [J]. Journal of Computer Applications, 2021, 41(12): 3608-3613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||