Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1260-1268.DOI: 10.11772/j.issn.1001-9081.2021071258
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
Zhihua LIU1,2, Wenjie CHEN1,2, Aibin CHEN1,2()
Received:
2021-07-16
Revised:
2021-08-26
Accepted:
2021-08-30
Online:
2021-08-26
Published:
2022-04-10
Contact:
Aibin CHEN
About author:
LIU Zhihua, born in 1996, M. S. candidate. His research interests include deep learning, audio classification.Supported by:
通讯作者:
陈爱斌
作者简介:
刘志华(1996—),男,湖南邵阳人,硕士研究生,主要研究方向:深度学习、音频分类基金资助:
CLC Number:
Zhihua LIU, Wenjie CHEN, Aibin CHEN. Homologous spectrogram feature fusion with self-attention mechanism for bird sound classification[J]. Journal of Computer Applications, 2022, 42(4): 1260-1268.
刘志华, 陈文洁, 陈爱斌. 基于自注意力机制时频谱同源特征融合的鸟鸣声分类[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1260-1268.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071258
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×600 | 8 | [2,1] | [1,1] |
2 | 8×79×600 | 8×39×600 | ― | [3,1] | [2,1] |
3 | 8×39×600 | 8×19×600 | 8 | [3,1] | [2,1] |
4 | 8×19×600 | 8×9×600 | ― | [3,1] | [2,1] |
5 | 8×9×600 | 8×4×600 | 8 | [3,1] | [2,1] |
6 | 8×4×600 | 8×2×600 | ― | [2,1] | [2,1] |
7 | 8×2×600 | 8×1×600 | ― | [2,1] | [2,1] |
Tab. 1 Parameter settings of the network to extract t feature
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×600 | 8 | [2,1] | [1,1] |
2 | 8×79×600 | 8×39×600 | ― | [3,1] | [2,1] |
3 | 8×39×600 | 8×19×600 | 8 | [3,1] | [2,1] |
4 | 8×19×600 | 8×9×600 | ― | [3,1] | [2,1] |
5 | 8×9×600 | 8×4×600 | 8 | [3,1] | [2,1] |
6 | 8×4×600 | 8×2×600 | ― | [2,1] | [2,1] |
7 | 8×2×600 | 8×1×600 | ― | [2,1] | [2,1] |
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×80×300 | 8 | [ | [ |
2 | 8×80×300 | 8×80×150 | ― | [ | [ |
3 | 8×80×150 | 8×80×50 | 8 | [ | [ |
4 | 8×80×50 | 8×80×25 | ― | [ | [ |
5 | 8×80×25 | 8×80×8 | 8 | [ | [ |
6 | 8×80×8 | 8×80×2 | ― | [ | [ |
7 | 8×80×2 | 8×80×1 | ― | [ | [ |
Tab. 2 Parameter settings of the network to extract p feature
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×80×300 | 8 | [ | [ |
2 | 8×80×300 | 8×80×150 | ― | [ | [ |
3 | 8×80×150 | 8×80×50 | 8 | [ | [ |
4 | 8×80×50 | 8×80×25 | ― | [ | [ |
5 | 8×80×25 | 8×80×8 | 8 | [ | [ |
6 | 8×80×8 | 8×80×2 | ― | [ | [ |
7 | 8×80×2 | 8×80×1 | ― | [ | [ |
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×300 | 8 | [2,2] | [ |
2 | 8×79×300 | 8×39×150 | ― | [3,2] | [2,2] |
3 | 8×39×150 | 8×19×50 | 8 | [3,3] | [ |
4 | 8×19×50 | 8×9×25 | ― | [3,2] | [2,2] |
Tab. 3 Parameter settings of the network to extract pt feature
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×300 | 8 | [2,2] | [ |
2 | 8×79×300 | 8×39×150 | ― | [3,2] | [2,2] |
3 | 8×39×150 | 8×19×50 | 8 | [3,3] | [ |
4 | 8×19×50 | 8×9×25 | ― | [3,2] | [2,2] |
种类 | 原始音频 数量 | 最终实验 样本数量 | 种类 | 原始音频 数量 | 最终实验 样本数量 |
---|---|---|---|---|---|
灰雁 | 330 | 2 244 | 叽喳柳莺 | 837 | 3 569 |
普通鵟 | 395 | 3 104 | 欧柳莺 | 512 | 2 650 |
金黄鹂 | 539 | 3 784 | 喜鹊 | 450 | 2 673 |
大山雀 | 927 | 2 525 | 乌鸫 | 512 | 3 012 |
Tab. 4 Number of experimental samples per bird species
种类 | 原始音频 数量 | 最终实验 样本数量 | 种类 | 原始音频 数量 | 最终实验 样本数量 |
---|---|---|---|---|---|
灰雁 | 330 | 2 244 | 叽喳柳莺 | 837 | 3 569 |
普通鵟 | 395 | 3 104 | 欧柳莺 | 512 | 2 650 |
金黄鹂 | 539 | 3 784 | 喜鹊 | 450 | 2 673 |
大山雀 | 927 | 2 525 | 乌鸫 | 512 | 3 012 |
实验序号 | 方法 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC+FC(p) | Image | 80×600 | 0.896 |
2 | 2DCNN+GRU+GRU(t) | Image | 80×600 | 0.804 |
3 | 2DCNN+FC+FC(pt) | Image | 80×600 | 0.872 |
4 | Experiment(1+2+3)+Decision-fusion | Image | 80×600 | 0.923 |
5 | Experiment(1+2+3)+Self-attention+Decision-fusion | Image | 80×600 | 0.939 |
Tab. 5 Self-comparison experiment results
实验序号 | 方法 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC+FC(p) | Image | 80×600 | 0.896 |
2 | 2DCNN+GRU+GRU(t) | Image | 80×600 | 0.804 |
3 | 2DCNN+FC+FC(pt) | Image | 80×600 | 0.872 |
4 | Experiment(1+2+3)+Decision-fusion | Image | 80×600 | 0.923 |
5 | Experiment(1+2+3)+Self-attention+Decision-fusion | Image | 80×600 | 0.939 |
Types | Precision | Recall | F1-score | 数据数量 |
---|---|---|---|---|
灰雁 | 0.962 | 0.922 | 0.941 | 689 |
普通鵟 | 0.924 | 0.918 | 0.921 | 955 |
金黄鹂 | 0.885 | 0.945 | 0.914 | 1 162 |
大山雀 | 0.992 | 0.950 | 0.970 | 743 |
叽喳柳莺 | 0.982 | 0.971 | 0.977 | 1 038 |
欧柳莺 | 0.912 | 0.966 | 0.938 | 754 |
喜鹊 | 0.952 | 0.949 | 0.950 | 819 |
乌鸫 | 0.924 | 0.882 | 0.903 | 908 |
Micro average | 0.942 | 0.938 | 0.938 | 7 068 |
Macro average | 0.942 | 0.938 | 0.939 | 7 068 |
Weighted average | 0.939 | 0.938 | 0.938 | 7 068 |
Tab. 6 Confusion matrix analysis results
Types | Precision | Recall | F1-score | 数据数量 |
---|---|---|---|---|
灰雁 | 0.962 | 0.922 | 0.941 | 689 |
普通鵟 | 0.924 | 0.918 | 0.921 | 955 |
金黄鹂 | 0.885 | 0.945 | 0.914 | 1 162 |
大山雀 | 0.992 | 0.950 | 0.970 | 743 |
叽喳柳莺 | 0.982 | 0.971 | 0.977 | 1 038 |
欧柳莺 | 0.912 | 0.966 | 0.938 | 754 |
喜鹊 | 0.952 | 0.949 | 0.950 | 819 |
乌鸫 | 0.924 | 0.882 | 0.903 | 908 |
Micro average | 0.942 | 0.938 | 0.938 | 7 068 |
Macro average | 0.942 | 0.938 | 0.939 | 7 068 |
Weighted average | 0.939 | 0.938 | 0.938 | 7 068 |
实验序号 | 模型 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC | Image | 80×600 | 0.872 |
2 | LSTM+FC | Image | 80×600 | 0.868 |
3 | SPFN | Continuous frame sequence | 150×80×6 | 0.932 |
4 | 本文模型 | Image | 80×600 | 0.939 |
Tab. 7 Comparison of experimental results with other models
实验序号 | 模型 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC | Image | 80×600 | 0.872 |
2 | LSTM+FC | Image | 80×600 | 0.868 |
3 | SPFN | Continuous frame sequence | 150×80×6 | 0.932 |
4 | 本文模型 | Image | 80×600 | 0.939 |
1 | 李朝洪,赵晓红.黑龙江省森工国有林区生态建设与经济转型协调发展研究[J].南京林业大学学报(自然科学版),2019,43(2):144-152. 10.3969/j.issn.1000-2006.201804022 |
LI C H, ZHAO X H. Study on the coordinated development of ecological construction and economic transformation in state-owned forest region of forest industry in Heilongjiang Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(2): 144-152. 10.3969/j.issn.1000-2006.201804022 | |
2 | QIAO Y, QIAN K, ZHAO Z P. Learning higher representations from bioacoustics: a sequence-to-sequence deep learning approach for bird sound classification[C]// Proceedings of the 2020 International Conference on Neural Information Processing. Cham: Springer, 2020: 130-138. 10.1007/978-3-030-63823-8_16 |
3 | LEE C H, CHOU C H, HAN C C, et al. Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis[J]. Pattern Recognition Letters, 2006, 27(2): 93-101. 10.1016/j.patrec.2005.07.004 |
4 | DONG X Y, JIA J P. Advances in automatic bird species recognition from environmental audio[C]// Proceedings of the 5th International Conference on Intelligent Computing and Signal Proceeding. Suzhou: Journal of Physics: Conference Series, 2020: 012110. 10.1088/1742-6596/1544/1/012110 |
5 | LENG Y R, TRAN H D. Multi-label bird classification using an ensemble classifier with simple features[C]// Proceedings of the 2014 Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2014: 1-5. 10.1109/apsipa.2014.7041649 |
6 | CHEN Z X, MAHER R C. Semi-automatic classification of bird vocalizations using spectral peak tracks[J]. The Journal of the Acoustical Society of America, 2006, 120(5): 2974-2984. 10.1121/1.2345831 |
7 | FAGERLUND S. Bird species recognition using support vector machines[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007: 38637.1-38637.8. 10.1155/2007/38637 |
8 | QIAN K, GUO J, ISHIDA K, et al. Fast recognition of bird sounds using extreme learning machines[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(2): 294-296. 10.1002/tee.22378 |
9 | TAN L N, ALWAN A. Dynamic time warping and sparse representation classification for birdsong phrase classification using limited training data[J]. The Journal of the Acoustical Society of America, 2015, 137(3): 1069-1080. 10.1121/1.4906168 |
10 | 阙鑫华,乔倩,蒋慧,等.基于改进DTW算法的海岛水鸟鸣声识别应用研究[J].农村经济与科技,2021,32(11):320-322. 10.3969/j.issn.1007-7103.2021.11.117 |
QUE X H, QIAO Q, JIANG H, et al. Application research of island waterbird song recognition based on improved DTW algorithm[J]. Rural Economy and Science-Technology, 2021, 32(11): 320-322. 10.3969/j.issn.1007-7103.2021.11.117 | |
11 | JANČOVIČ P, KÖKÜER M, RUSSELL M. Bird species recognition from field recordings using HMM-based modelling of frequency tracks[C]// Proceedings of the 2014 International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2014: 8252-8256. 10.1109/icassp.2014.6855210 |
12 | WIELGAT R, POTEMPA T, ŚWIETOJAŃSKI P, et al. On using prefiltration in HMM-based bird species recognition[C]// Proceedings of the 2012 International Conference on Signals and Electronic Systems. Piscataway: IEEE, 2012: 1-5. 10.1109/icses.2012.6382258 |
13 | SPRINGER J, DUAN Z, PARDO B. Approaches to multiple concurrent species bird song recognition[C]// Proceedings of the 2nd International Workshop on Machine Listening in Multisource Environments. Piscataway: IEEE, 2013: 85-86. |
14 | ACEVEDO M A, CORRADA-BRAVO C J, CORRADA-BRAVO H, et al. Automated classification of bird and amphibian calls using machine learning: a comparison of methods[J]. Ecological Informatics, 2009, 4(4): 206-214. 10.1016/j.ecoinf.2009.06.005 |
15 | 张赛花,赵兆,许志勇,等.基于Mel子带参数化特征的自动鸟鸣识别[J].计算机应用,2017,37(4):1111-1115. 10.11772/j.issn.1001-9081.2017.04.1111 |
ZHANG S H, ZHAO Z, XU Z Y, et al. Automatic bird vocalization identification based on Mel-subband parameterized feature[J]. Journal of Computer Applications, 2017, 37(4): 1111-1115. 10.11772/j.issn.1001-9081.2017.04.1111 | |
16 | LEE C H, HSU S B, SHIH J L, et al. Continuous birdsong recognition using Gaussian mixture modeling of image shape features[J]. IEEE Transactions on Multimedia, 2012, 15(2): 454-464. 10.1109/tmm.2012.2229969 |
17 | HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. 10.1109/msp.2012.2205597 |
18 | ZHANG H, MCLOUGHLIN I, SONG Y. Robust sound event recognition using convolutional neural networks[C]// Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2015: 559-563. 10.1109/icassp.2015.7178031 |
19 | ZHANG X, CHEN A B, ZHOU G X, et al. Spectrogram-frame linear network and continuous frame sequence for bird sound classification[J]. Ecological Informatics, 2019, 54: 101009. 10.1016/j.ecoinf.2019.101009 |
20 | SPRENGEL E, JAGGI M, KILCHER Y, et al. Audio based bird species identification using deep learning techniques[C]// Proceedings of the 2016 Conference and Labs of the Evaluation Forum. Cham: Springer, 2016: 547-559. |
21 | KOOPS H V, BALEN J V, WIERING F. A deep neural network approach to the LifeCLEF 2014 bird task[J]. CLEF2014 Working Notes, 2014, 1180: 634. |
22 | SANKUPELLAY M, KONOVALOV D. Bird call recognition using deep convolutional neural network, ResNet-50[C]// Proceedings of the 2018 International Conference on ACOUSTICS. New York: Curran Associates Inc., 2018, 7: 1-8. |
23 | HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
24 | TAKAHASH N, GYGLI M, GOOL L VAN. AENet: Learning deep audio features for video analysis[J]. IEEE Transactions on Multimedia, 2018, 20(3): 513-524. 10.1109/tmm.2017.2751969 |
25 | NARANCHIMEG B, ZHANG C, AKASHI T. Cross-domain deep feature combination for bird species classification with audio-visual data[J]. IEICE Transactions on Information and Systems, 2019, 102(10): 2033-2042. 10.1587/transinf.2018edp7383 |
26 | XIE J, HU K, ZHU M Y, et al. Investigation of different CNN-based models for improved bird sound classification[J]. IEEE Access, 2019, 7: 175353-175361. 10.1109/access.2019.2957572 |
27 | 谢将剑,杨俊,邢照亮,等.多特征融合的鸟类物种识别方法[J].应用声学,2020,39(2):199-206. 10.11684/j.issn.1000-310X.2020.02.005 |
XIE J J, YANG J, XING Z L, et al. Bird species recognition method based on multi-feature fusion[J]. Journal of Applied Acoustics, 2020, 39(2): 199-206. 10.11684/j.issn.1000-310X.2020.02.005 | |
28 | GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 6645-6649. 10.1109/icassp.2013.6638947 |
29 | MÜLLER L, MARTÍ M. Bird sound classification using a bidirectional LSTM[C]// CLEF 2018:Proceedings of the 2018 Conference on Bird Conference and Labs of the Evaluation Forum. Cham: Sprinter, 2018: 134.1-134.13. |
30 | 邢照亮,吴伟银,张正晓,等.基于C-LSTM的鸟鸣声识别方法[J].科技创新与应用,2021,11(15):15-18. |
XING Z L, WU W Y, ZHANG Z X, et al. Birdsong recognition method based on C-LSTM[J]. Technological Innovation and Application, 2021, 11(15): 15-18. | |
31 | HIMAWAN I, TOWSEY M, ROE P. 3D convolution recurrent neural networks for bird sound detection[C]// Proceedings of the 3rd Workshop on Detection and Classification of Acoustic Scenes and Events. Västra Finlands län: Tampere University of Technology, 2018: 108-112. |
32 | PEI S C, DING J J. Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(10): 4839-4850. 10.1109/tsp.2007.896271 |
33 | NEAL L, BRIGGS F, RAICH R, et al. Time-frequency segmentation of bird song in noisy acoustic environments[C]// Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway: IEEE, 2011: 2012-2015. 10.1109/icassp.2011.5946906 |
34 | WANG W, YANG N, WEI F, et al. Gated self-matching networks for reading comprehension and question answering[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2017: 189-198. 10.18653/v1/p17-1018 |
35 | NUTTALL A. Some windows with very good sidelobe behavior[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(1): 84-91. 10.1109/tassp.1981.1163506 |
36 | LEE C H, HAN C C, CHUANG C C. Automatic classification of bird species from their sounds using two-dimensional cepstral coefficients[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(8): 1541-1550. 10.1109/tasl.2008.2005345 |
37 | MCFEE B, RAFFEL C, LIANG D, et al. Librosa: audio and music signal analysis in python[EB/OL].[2021-05-30].. 10.25080/majora-7b98e3ed-003 |
38 | STEVENS S S, VOLKMANN J, NEWMAN E B. A scale for the measurement of the psychological magnitude pitch[J]. The Journal of the Acoustical Society of America, 1937, 8(3): 185-190. 10.1121/1.1915893 |
39 | LAVANYA S, LAVANYA D, NELATURI N. Random forest algorithm for recognition of bird species using audio recordings [J]. International Journal of Technology Management, 2018, 8(11),90-94. |
40 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. [2018-04-19]. . |
41 | KAHL S, WILHELM-STEIN T, KLINCK H, et al. Recognizing birds from sound-the 2018 BirdCLEF baseline system [EB/OL]. [2018-04-19]. . |
42 | KOOPS H, BALEN J VAN, WIERING F. A deep neural network approach to the lifeclef 2014 bird task[J]. Conference and Labs of the Evaluation Forum 2014 Working Notes, 2014, 1180: 634-642. |
43 | GUO J X, XU N, LI L J, et al. Attention based CLDNNs for short-duration acoustic scene classification[C]// Proceedings of the 2017 Conference on Interspeech. Stockholm: International Speech Communication Association, 2017: 469-473. |
44 | TIELEMAN T, HINTON G. Lecture 6.5—RMSprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26-31. |
45 | CHEN X, ZHOU G X, CHEN A B, et al. Identification of tomato leaf diseases based on combination of ABCK-BWTR and B-ARNet[J]. Computers and Electronics in Agriculture, 2020, 178: 105730. 10.1016/j.compag.2020.105730 |
46 | YI J Z, CHEN A B, CAI Z X, et al. Facial expression recognition of intercepted video sequences based on feature point movement trend and feature block texture variation[J]. Applied Soft Computing, 2019, 82: 105540. 10.1016/j.asoc.2019.105540 |
47 | 刘伟波,曾庆宁,卜玉婷,等. 基于双微阵列与卷积神经网络的语音识别方法[J].计算机应用,2019,39(11):3268-3273. |
LIU W B, ZENG Q N, BU Y T, et al. Automatic bird vocalization identification based on mel-subband parameterized feature[J]. Journal of Computer Applications, 2019,39(11):3268-3273. |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[3] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[7] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[8] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||