[1] 季一木, 陈治宇, 田鹏浩, 等. 无人驾驶中3D目标检测方法研究综述[J]. 南京邮电大学学报(自然科学版), 2019, 39(4):72-79.(JI Y M, CHEN Z Y, TIAN P H, et al. A survey of 3D target detection methods in unmanned driving[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2019, 39(4):72-79.) [2] 张鹏, 宋一凡, 宗立波, 等. 3D目标检测进展综述[J]. 计算机科学, 2020, 47(4):94-102.(ZHANG P, SONG Y F, ZONG L B, et al. Advances in 3D object detection:a brief survey[J]. Computer Science, 2020, 47(4):94-102.) [3] ZHONG F W, WANG S, ZHANG Z Q, et al. Detect-SLAM:making object detection and SLAM mutually beneficial[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2018:1001-1010. [4] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:945-953. [5] LI B, ZHANG T L, XIA T. Vehicle detection from 3D lidar using fully convolutional network[EB/OL]. (2016-08-29)[2020-11-10]. https://arxiv.org/pdf/1608.07916. [6] WU B C, WAN A, YUE X Y, et al. SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2018:1887-1893. [7] ENGELCKE M, RAO D, WANG D Z, et al. Vote3Deep:fast object detection in 3D point clouds using efficient convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2017:1355-1361. [8] ZHOU Y, TUZEL O. VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4490-4499. [9] YAN Y, MAO Y X, LI B, et al. SECOND:sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10):No. 3337. [10] QI C R, SU H, MO K C, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:77-85. [11] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 201731st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:5105-5114. [12] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5):No. 146. [13] LE M T, DIEHL F, BRUNNER T, et al. Uncertainty estimation for deep neural object detectors in safety-critical applications[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Piscataway:IEEE, 2018:3873-3878. [14] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:21-37. [15] CHOI J, CHUN D, KIM H, et al. Gaussian YOLOv3:an accurate and fast object detector using localization uncertainty for autonomous driving[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:502-511. [16] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2020-11-10]. https://arxiv.org/pdf/1804.02767.pdf. [17] KENDALL A, GAL Y. What uncertainties do we need in Bayesian deep learning for computer vision?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:5580-5590. [18] ZHONG Y X, ZHU M H, PENG H. Uncertainty-aware voxel based 3D object detection and tracking with von-Mises loss[EB/OL]. (2020-11-04)[2020-11-10]. https://arxiv.org/pdf/2011.02553.pdf. [19] PAN H J, WANG Z N, ZHAN W, et al. Towards better performance and more explainable uncertainty for 3D object detection of autonomous vehicles[C]//Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems. Piscataway:IEEE, 2020:1-7. [20] SHI S S, WANG X G, LI H S. PointRCNN:3D object proposal generation and detection from point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:770-779. [21] HE C H, ZENG H, HUANG J Q, et al. Structure aware singlestage 3D object detection from point cloud[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:11870-11879. [22] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:3354-3361. |