Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1942-1948.DOI: 10.11772/j.issn.1001-9081.2023060742
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:
2023-06-12
Revised:
2023-08-11
Accepted:
2023-08-16
Online:
2023-09-11
Published:
2024-06-10
Contact:
Yang LI
About author:
ZHOU Yan, born in 1998, M. S. candidate. Her research interests include medical image analysis, deep learning.
Supported by:
通讯作者:
李阳
作者简介:
周妍(1998—),女,江苏泰州人,硕士研究生,主要研究方向:医学影像分析、深度学习;
基金资助:
CLC Number:
Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation[J]. Journal of Computer Applications, 2024, 44(6): 1942-1948.
周妍, 李阳. 用于脑卒中病灶分割的具有注意力机制的校正交叉伪监督方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1942-1948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060742
方法 | 标记数据 | 未标记数据 | 评价指标 | 复杂度 | ||||
---|---|---|---|---|---|---|---|---|
DSC/ %↑ | HD95/mm ↓ | ASD/mm↓ | Para./106 | MACs/109 | ||||
3D U-Net | 19 | 0 | 58.82 | 18.99 | 2.17 | 5.88 | 7.66 | |
CPS | 19 | 73 | 62.49 | 15.29 | 1.20 | 5.88 | 7.66 | |
CPS* | 19 | 73 | 60.17 | 15.87 | 1.73 | 5.88 | 7.66 | |
CPS+PE | 19 | 73 | 65.72 | 14.14 | 1.07 | 5.93 | 7.77 | |
RPE-CPS | 19 | 73 | 67.74 | 15.38 | 1.05 | 5.93 | 7.77 |
Tab. 1 Ablation experiment results on AIS dataset
方法 | 标记数据 | 未标记数据 | 评价指标 | 复杂度 | ||||
---|---|---|---|---|---|---|---|---|
DSC/ %↑ | HD95/mm ↓ | ASD/mm↓ | Para./106 | MACs/109 | ||||
3D U-Net | 19 | 0 | 58.82 | 18.99 | 2.17 | 5.88 | 7.66 | |
CPS | 19 | 73 | 62.49 | 15.29 | 1.20 | 5.88 | 7.66 | |
CPS* | 19 | 73 | 60.17 | 15.87 | 1.73 | 5.88 | 7.66 | |
CPS+PE | 19 | 73 | 65.72 | 14.14 | 1.07 | 5.93 | 7.77 | |
RPE-CPS | 19 | 73 | 67.74 | 15.38 | 1.05 | 5.93 | 7.77 |
方法 | 标记 数据 | 未标记 数据 | 评价指标 | 复杂度 | |||
---|---|---|---|---|---|---|---|
DSC/ %↑ | HD95/ mm↓ | ASD/mm↓ | Para./106 | MACs/109 | |||
3D U-Net | 35 | 0 | 64.38 | 13.72 | 2.73 | 5.88 | 7.66 |
CPS | 35 | 140 | 68.48 | 8.15 | 1.35 | 5.88 | 7.66 |
CPS* | 35 | 140 | 68.46 | 10.10 | 2.24 | 5.88 | 7.66 |
CPS+PE | 35 | 140 | 72.13 | 6.38 | 1.46 | 5.93 | 7.77 |
RPE-CPS | 35 | 140 | 73.87 | 6.08 | 1.31 | 5.93 | 7.77 |
Tab. 2 Ablation experiment results on ISLES2022 dataset
方法 | 标记 数据 | 未标记 数据 | 评价指标 | 复杂度 | |||
---|---|---|---|---|---|---|---|
DSC/ %↑ | HD95/ mm↓ | ASD/mm↓ | Para./106 | MACs/109 | |||
3D U-Net | 35 | 0 | 64.38 | 13.72 | 2.73 | 5.88 | 7.66 |
CPS | 35 | 140 | 68.48 | 8.15 | 1.35 | 5.88 | 7.66 |
CPS* | 35 | 140 | 68.46 | 10.10 | 2.24 | 5.88 | 7.66 |
CPS+PE | 35 | 140 | 72.13 | 6.38 | 1.46 | 5.93 | 7.77 |
RPE-CPS | 35 | 140 | 73.87 | 6.08 | 1.31 | 5.93 | 7.77 |
方法 | 标记数据 | 未标记数据 | DSC/ %↑ | HD95/mm↓ | ASD/ mm↓ |
---|---|---|---|---|---|
UAMT | 19 | 73 | 59.16 | 16.82 | 2.08 |
ICT | 19 | 73 | 60.80 | 18.14 | 1.38 |
EM | 19 | 73 | 60.44 | 16.97 | 1.55 |
CPS | 19 | 73 | 62.49 | 15.29 | 1.20 |
URPC | 19 | 73 | 64.31 | 16.94 | 1.60 |
RPE-CPS | 19 | 73 | 67.74 | 15.38 | 1.05 |
Tab.3 Comparison with five advanced semi-supervised methods on AIS dataset
方法 | 标记数据 | 未标记数据 | DSC/ %↑ | HD95/mm↓ | ASD/ mm↓ |
---|---|---|---|---|---|
UAMT | 19 | 73 | 59.16 | 16.82 | 2.08 |
ICT | 19 | 73 | 60.80 | 18.14 | 1.38 |
EM | 19 | 73 | 60.44 | 16.97 | 1.55 |
CPS | 19 | 73 | 62.49 | 15.29 | 1.20 |
URPC | 19 | 73 | 64.31 | 16.94 | 1.60 |
RPE-CPS | 19 | 73 | 67.74 | 15.38 | 1.05 |
方法 | 标记数据 | 未标记数据 | DSC/ %↑ | HD95/ mm↓ | ASD/ mm↓ |
---|---|---|---|---|---|
UAMT | 35 | 140 | 64.94 | 10.05 | 2.19 |
ICT | 35 | 140 | 67.59 | 9.80 | 1.45 |
EM | 35 | 140 | 67.99 | 7.71 | 1.41 |
CPS | 35 | 140 | 68.48 | 8.15 | 1.35 |
URPC | 35 | 140 | 71.68 | 7.77 | 1.49 |
RPE-CPS | 35 | 140 | 73.87 | 6.08 | 1.31 |
Tab. 4 Comparison with five advanced semi-supervised methods on ISLES2022 dataset
方法 | 标记数据 | 未标记数据 | DSC/ %↑ | HD95/ mm↓ | ASD/ mm↓ |
---|---|---|---|---|---|
UAMT | 35 | 140 | 64.94 | 10.05 | 2.19 |
ICT | 35 | 140 | 67.59 | 9.80 | 1.45 |
EM | 35 | 140 | 67.99 | 7.71 | 1.41 |
CPS | 35 | 140 | 68.48 | 8.15 | 1.35 |
URPC | 35 | 140 | 71.68 | 7.77 | 1.49 |
RPE-CPS | 35 | 140 | 73.87 | 6.08 | 1.31 |
1 | 《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2020》概要[J].中国脑血管病杂志,2022,19(2):136-144. |
Report on Stroke Prevention and Treatment in China Writing Group. Brief report on stroke prevention and treatment in China, 2020 [J]. Chinese Journal of Cerebrovascular Diseases, 2022, 19(2): 136-144. | |
2 | MATHERS C D, BOERMA T, MA FAT D. Global and regional causes of death [J]. British Medical Bulletin, 2009, 92(1): 7-32. |
3 | SAVER J L. Time is brain-quantified [J]. Stroke, 2006, 37(1): 263-266. |
4 | INAMDAR M A, RAGHAVENDRA U, GUDIGAR A, et al. A review on computer aided diagnosis of acute brain stroke[J]. Sensors, 2021, 21(24): 8507. |
5 | PENG J, WANG Y. Medical image segmentation with limited supervision: a review of deep network models[J]. IEEE Access, 2021, 9: 36827-36851. |
6 | ALOM M Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): 014006. |
7 | LUO X, CHEN J, SONG T, et al. Semi-supervised medical image segmentation through dual-task consistency[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8801-8809. |
8 | FAN D-P, ZHOU T, JI G-P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637. |
9 | WANG L, GUO D, WANG G, et al. Annotation-efficient learning for medical image segmentation based on noisy pseudo labels and adversarial learning[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2795-2807. |
10 | OUYANG C, BIFFI C, CHEN C, et al. Self-supervised learning for few-shot medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(7): 1837-1848. |
11 | ZHANG Y, LIN X, ZHUANG Y, et al. Harmonizing pathological and normal pixels for pseudo-healthy synthesis[J]. IEEE Transactions on Medical Imaging, 2022, 41(9): 2457-2468. |
12 | CUI W, LIU Y, LI Y, et al. Semi-supervised brain lesion segmentation with an adapted mean teacher model[C]// Proceedings of the 26th International Conference on Information Processing in Medical Imaging. Cham:Springer, 2019: 554-565. |
13 | VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning[J]. Neural Networks, 2022, 145: 90-106. |
14 | CHEN X, YUAN Y, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021: 2613-2622. |
15 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015: 234-241. |
16 | ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. |
17 | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation [C]// Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 424-432. |
18 | YAO H, HU X, LI X. Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 3099-3107. |
19 | WANG X, YUAN Y, GUO D, et al. SSA-Net: spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning[J]. Medical Image Analysis, 2022, 79: 102459. |
20 | YU L, WANG S, LI X, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[C]// Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2019: 605-613. |
21 | WU Y, GE Z, ZHANG D, et al. Mutual consistency learning for semi-supervised medical image segmentation[J]. Medical Image Analysis, 2022, 81: 102530. |
22 | KALLURI T, VARMA G, CHANDRAKER M, et al. Universal semi-supervised semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision. Piscataway:IEEE, 2019: 5259-5270. |
23 | LUO X, WANG G, LIAO W, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517. |
24 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
25 | OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2023-06-05]. . |
26 | A-M RICKMANN, ROY A G, SARASUA I, et al. ‘Project & excite’ modules for segmentation of volumetric medical scans[C]// Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2019: 39-47. |
27 | ZHAO X, QI Z, WANG S, et al. RCPS: rectified contrastive pseudo supervision for semi-supervised medical image segmentation [EB/OL]. [2023-07-18]. . |
28 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 7132-7141. |
29 | HERNANDEZ PETZSCHE M R, DE LA ROSA E, HANNING U, et al. ISLES 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset[J]. Scientific Data, 2022, 9: 762. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||