Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3540-3545.DOI: 10.11772/j.issn.1001-9081.2021060963
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Haitao XUE1, Li WANG1(), Yanjie YANG1, Biao LIAN2
Received:
2021-05-12
Revised:
2021-06-25
Accepted:
2021-07-04
Online:
2021-12-28
Published:
2021-12-10
Contact:
Li WANG
About author:
XUE Haitao, born in 1997, M. S. candidate. His research interests include natural language processing, rumor detection.Supported by:
通讯作者:
王莉
作者简介:
薛海涛(1997—),男,山西介休人,硕士研究生,主要研究方向:自然语言处理、谣言检测基金资助:
CLC Number:
Haitao XUE, Li WANG, Yanjie YANG, Biao LIAN. Rumor detection model based on user propagation network and message content[J]. Journal of Computer Applications, 2021, 41(12): 3540-3545.
薛海涛, 王莉, 杨延杰, 廉飚. 基于用户传播网络与消息内容融合的谣言检测模型[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3540-3545.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060963
统计信息 | 数量 |
---|---|
事件数量 | 4 664 |
真实事件数量 | 2 351 |
虚假事件数量 | 2 313 |
用户数量 | 2 746 818 |
帖子数 | 3 805 656 |
Tab. 1 Experimental dataset statistics
统计信息 | 数量 |
---|---|
事件数量 | 4 664 |
真实事件数量 | 2 351 |
虚假事件数量 | 2 313 |
用户数量 | 2 746 818 |
帖子数 | 3 805 656 |
特征 | 描述 |
---|---|
reposts_count | 帖子的转发数 |
bi_followers_count | 互相关注的数量 |
friends_count | 关注数 |
followers_count | 粉丝数 |
statuses_count | 发表帖子数 |
verified | 是否验证 |
favourits_count | 最喜欢的帖子数 |
comments_count | 评论数 |
t | 用户转发时间戳 |
Tab. 2 Node features
特征 | 描述 |
---|---|
reposts_count | 帖子的转发数 |
bi_followers_count | 互相关注的数量 |
friends_count | 关注数 |
followers_count | 粉丝数 |
statuses_count | 发表帖子数 |
verified | 是否验证 |
favourits_count | 最喜欢的帖子数 |
comments_count | 评论数 |
t | 用户转发时间戳 |
方法 | 准确率 | 精确率 | 召回率 | F1值 | |||
---|---|---|---|---|---|---|---|
谣言 | 非谣言 | 谣言 | 非谣言 | 谣言 | 非谣言 | ||
DTC | 0.831 | 0.815 | 0.847 | 0.825 | 0.815 | 0.819 | 0.831 |
SVM-RBF | 0.879 | 0.579 | 0.777 | 0.708 | 0.656 | 0.615 | 0.708 |
TD-RvNN | 0.908 | 0.904 | 0.912 | 0.918 | 0.897 | 0.911 | 0.905 |
PPC_RNN+CNN | 0.913 | 0.927 | 0.884 | 0.901 | 0.932 | 0.907 | 0.922 |
HiMap-HO+Text | 0.892 | 0.892 | 0.892 | 0.878 | 0.910 | 0.896 | 0.888 |
BiGCN | 0.905 | 0.919 | 0.894 | 0.895 | 0.916 | 0.900 | 0.898 |
GMB_GMU | 0.952 | 0.934 | 0.968 | 0.967 | 0.939 | 0.950 | 0.953 |
Tab. 3 Experimental results on Weibo dataset
方法 | 准确率 | 精确率 | 召回率 | F1值 | |||
---|---|---|---|---|---|---|---|
谣言 | 非谣言 | 谣言 | 非谣言 | 谣言 | 非谣言 | ||
DTC | 0.831 | 0.815 | 0.847 | 0.825 | 0.815 | 0.819 | 0.831 |
SVM-RBF | 0.879 | 0.579 | 0.777 | 0.708 | 0.656 | 0.615 | 0.708 |
TD-RvNN | 0.908 | 0.904 | 0.912 | 0.918 | 0.897 | 0.911 | 0.905 |
PPC_RNN+CNN | 0.913 | 0.927 | 0.884 | 0.901 | 0.932 | 0.907 | 0.922 |
HiMap-HO+Text | 0.892 | 0.892 | 0.892 | 0.878 | 0.910 | 0.896 | 0.888 |
BiGCN | 0.905 | 0.919 | 0.894 | 0.895 | 0.916 | 0.900 | 0.898 |
GMB_GMU | 0.952 | 0.934 | 0.968 | 0.967 | 0.939 | 0.950 | 0.953 |
1 | CASTILLO C, MENDOZA M, POBLETE B. Information credibility on Twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011:675-684. 10.1145/1963405.1963500 |
2 | QIAN F, GONG C Y, SHARMA K, et al. Neural user response generator: fake news detection with collective user intelligence[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2018: 3834-3840. 10.24963/ijcai.2018/533 |
3 | LIU Y, WU Y F B. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:354-361. 10.1609/aaai.v33i01.33015644 |
4 | MA J, GAO W, WONG K F. Rumor detection on Twitter with tree-structured recursive neural networks[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 1980-1989. 10.18653/v1/p18-1184 |
5 | RASHKIN H, CHOI E, JANG J Y, et al. Truth of varying shades: analyzing language in fake news and political fact-checking[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017:2931-2937. 10.18653/v1/d17-1317 |
6 | 段大高,谢永恒,盖新新,等. 基于神经网络的微博虚假消息识别模型[J]. 信息网络安全, 2017(9):134-137. 10.3969/j.issn.1671-1122.2017.09.031 |
DUAN D G, XIE Y H, GAI X X, et al. A rumor detection modal based on neural network[J]. Netinfo Security, 2017(9):134-147. 10.3969/j.issn.1671-1122.2017.09.031 | |
7 | 刘政,卫志华,张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017, 37(11):3053-3056, 3100. 10.11772/j.issn.1001-9081.2017.11.3053 |
LIU Z, WEI Z H, ZHANG R X. Rumor detection based on convolutional neural network[J]. Journal of Computer Applications, 2017, 37(11):3053-3056, 3100. 10.11772/j.issn.1001-9081.2017.11.3053 | |
8 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013:3111-3119. |
9 | FANG Y, GAO J, HUANG C, et al. Self multi-head attention-based convolutional neural networks for fake news detection[J]. PLoS ONE, 2019, 14(9): No.e0222713. 10.1371/journal.pone.0222713 |
10 | VAIBHAV V, ANNASAMY R M, HOVY E. Do sentence interactions matter? leveraging sentence level representations for fake news classification[C]// Proceedings of the 13th Workshop on Graph-Based Methods for Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 134-139. 10.18653/v1/d19-5316 |
11 | WANG Y H, WANG L, YANG Y J, et al. SemSeq4FD: integrating global semantic relationship and local sequential order to enhance text representation for fake news detection[J]. Expert Systems with Applications, 2020, 166: No.114090. 10.1016/j.eswa.2020.114090 |
12 | LIU Y H, JIN X L, SHEN H W, et al. Do rumors diffuse differently from non-rumors? a systematically empirical analysis in Sina Weibo for rumor identification[C]// Proceedings of the 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS10234. Cham: Springer, 2017: 407-420. 10.1007/978-3-319-57454-7_32 |
13 | SHU K, MAHUDESWARAN D, WANG S H, et al. Hierarchical propagation networks for fake news detection: investigation and exploitation[C]// Proceedings of the 14th International AAAI Conference on Web and Social Media. Palo Alto, CA: AAAI Press, 2020: 626-637. 10.1089/big.2020.0062 |
14 | BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 549-556. 10.1609/aaai.v34i01.5393 |
15 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2020-10-10].. |
16 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
17 | MISHRA R. Fake news detection using higher-order user to user mutual-attention progression in propagation paths[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 2775-2783. 10.1109/cvprw50498.2020.00334 |
18 | DAVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. |
19 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. 10.1016/s0262-4079(17)32358-8 |
20 | AREVALO J, SOLORIO T, MONTES-Y-GOMÓZ M, et al. Gated multimodal networks[J]. Neural Computing and Applications, 2020, 32(14): 10209-10228. 10.1007/s00521-019-04559-1 |
21 | MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2016: 3818-3824. |
22 | YANG F, LIU Y, YU X H, et al. Automatic detection of rumor on Sina Weibo[C]// Proceedings of the 18th ACM SIGKDD Workshop on Mining Data Semantics. New York: ACM, 2012: No.13. 10.1145/2350190.2350203 |
[1] | Wenfan MENG, Lihua ZHOU, Xiaoxu WANG. Rumor detection by fusing ambiguity in comment sequences and generating user privacy features [J]. Journal of Computer Applications, 2024, 44(8): 2342-2350. |
[2] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[3] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[4] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[5] | Linqin WANG, Te ZHANG, Zhihong XU, Yongfeng DONG, Guowei YANG. Fusing entity semantic and structural information for knowledge graph reasoning [J]. Journal of Computer Applications, 2024, 44(11): 3371-3378. |
[6] | Wenjuan JIANG, Yi GUO, Jiaojiao FU. Reasoning question answering model of complex temporal knowledge graph with graph attention [J]. Journal of Computer Applications, 2024, 44(10): 3047-3057. |
[7] | Zhixiong ZHENG, Jianhua LIU, Shuihua SUN, Ge XU, Honghui LIN. Aspect-based sentiment analysis model fused with multi-window local information [J]. Journal of Computer Applications, 2023, 43(6): 1796-1802. |
[8] | Jinyun WANG, Yang XIANG. Text semantic de-duplication algorithm based on keyword graph representation [J]. Journal of Computer Applications, 2023, 43(10): 3070-3076. |
[9] | Chun GAO, Mengling WANG. Highway traffic flow prediction based on feature fusion graph attention network [J]. Journal of Computer Applications, 2023, 43(10): 3114-3120. |
[10] | Shigang YANG, Yongguo LIU. Short text classification method by fusing corpus features and graph attention network [J]. Journal of Computer Applications, 2022, 42(5): 1324-1329. |
[11] | Shoulong JIAO, Youxiang DUAN, Qifeng SUN, Zihao ZHUANG, Chenhao SUN. Knowledge representation learning method incorporating entity description information and neighbor node features [J]. Journal of Computer Applications, 2022, 42(4): 1050-1056. |
[12] | Renzhi PAN, Fulan QIAN, Shu ZHAO, Yanping ZHANG. Recommendation model for user attribute preference modeling based on convolutional neural network interaction [J]. Journal of Computer Applications, 2022, 42(2): 404-411. |
[13] | Bei BI, Huiyao PAN, Feng CHEN, Jingyan SUI, Yang GAO, Yaojun WANG. Microblog rumor detection model based on heterogeneous graph attention network [J]. Journal of Computer Applications, 2021, 41(12): 3546-3550. |
[14] | LIU Zheng, WEI Zhihua, ZHANG Renxian. Rumor detection based on convolutional neural network [J]. Journal of Computer Applications, 2017, 37(11): 3053-3056. |
[15] | YANG Wentai, LIANG Gang, XIE Kai, YANG Jin, XU Chun. Rumor detection method based on burst topic detection and domain expert discovery [J]. Journal of Computer Applications, 2017, 37(10): 2799-2805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||