Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (12): 3801-3812.DOI: 10.11772/j.issn.1001-9081.2021091640
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Le ZHAO1,2, En ZHANG1,2(), Leiyong QIN1,2, Gongli LI1,2
Received:
2021-09-17
Revised:
2022-01-10
Accepted:
2022-01-19
Online:
2022-04-15
Published:
2022-12-10
Contact:
En ZHANG
About author:
ZHAO Le, born in 1997, M. S. candidate. Her research interests include information security, cryptography.Supported by:
赵乐1,2, 张恩1,2(), 秦磊勇1,2, 李功丽1,2
通讯作者:
张恩
作者简介:
赵乐(1997—),女,河南驻马店人,硕士研究生,主要研究方向:信息安全、密码学基金资助:
CLC Number:
Le ZHAO, En ZHANG, Leiyong QIN, Gongli LI. Multi-party privacy preserving k-means clustering scheme based on blockchain[J]. Journal of Computer Applications, 2022, 42(12): 3801-3812.
赵乐, 张恩, 秦磊勇, 李功丽. 基于区块链的多方隐私保护k-means聚类方案[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3801-3812.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091640
符号 | 含义 |
---|---|
m个用户 | |
第i个用户的数据个数 | |
第i个用户的数据 | |
a与b的欧几里得平方距离 | |
第i个用户的第q个聚类中心 | |
经过扰动的第q个聚类中心 | |
初始聚类中心、属性值和、个数和的二进制串长度 | |
第q个聚类中心扰动后的二进制串 | |
用户初始聚类中心的隐私预算 | |
用户更新聚类中心的隐私预算 | |
第i个用户的第q个聚类的属性值和与个数和 | |
第i个用户的第q个聚类的属性值和与个数和扰动之后的二进制串 |
Tab. 1 Symbols and their meanings
符号 | 含义 |
---|---|
m个用户 | |
第i个用户的数据个数 | |
第i个用户的数据 | |
a与b的欧几里得平方距离 | |
第i个用户的第q个聚类中心 | |
经过扰动的第q个聚类中心 | |
初始聚类中心、属性值和、个数和的二进制串长度 | |
第q个聚类中心扰动后的二进制串 | |
用户初始聚类中心的隐私预算 | |
用户更新聚类中心的隐私预算 | |
第i个用户的第q个聚类的属性值和与个数和 | |
第i个用户的第q个聚类的属性值和与个数和扰动之后的二进制串 |
算法 | 参与方 | 存在初始聚类中心篡改 | 保护聚类中心隐私 | 用户获得正确聚类中心 |
---|---|---|---|---|
文献[ | 两方 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 否 |
M-kCCIA | 多方 | 否 | 是 | 是 |
Tab. 2 Function comparison of initialization algorithms
算法 | 参与方 | 存在初始聚类中心篡改 | 保护聚类中心隐私 | 用户获得正确聚类中心 |
---|---|---|---|---|
文献[ | 两方 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 否 |
M-kCCIA | 多方 | 否 | 是 | 是 |
算法 | 参与方 | 保护用户隐私 | 保护迭代过程数据 | 保护聚类结果 | 存在数据篡改 | 采用区块链 |
---|---|---|---|---|---|---|
文献[ | 两方 | 是 | 否 | 否 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
Bc-PPkCA | 多方 | 是 | 是 | 是 | 否 | 是 |
Tab. 3 Function comparison of privacy protection k-means algorithms
算法 | 参与方 | 保护用户隐私 | 保护迭代过程数据 | 保护聚类结果 | 存在数据篡改 | 采用区块链 |
---|---|---|---|---|---|---|
文献[ | 两方 | 是 | 否 | 否 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
文献[ | 多方 | 是 | 是 | 是 | 是 | 否 |
Bc-PPkCA | 多方 | 是 | 是 | 是 | 否 | 是 |
数据集 | 维度 | 样本数 |
---|---|---|
HTRU2 | 9 | 17 898 |
Abalone | 8 | 4 177 |
Tab.4 Introduction of datasets
数据集 | 维度 | 样本数 |
---|---|---|
HTRU2 | 9 | 17 898 |
Abalone | 8 | 4 177 |
1 | ZHOU L N, PAN S M, WANG J W, et al. Machine learning on big data: opportunities and challenges[J]. Neurocomputing, 2017, 237: 350-361. 10.1016/j.neucom.2017.01.026 |
2 | QIU J F, WU Q H, DING G R, et al. A survey of machine learning for big data processing[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016: No.67. 10.1186/s13634-016-0355-x |
3 | JHA S, KRUGER L, McDANIEL P. Privacy preserving clustering[C]// Proceedings of the 2005 European Symposium on Research in Computer Security, LNCS 3679. Berlin: Springer, 2005: 397-417. |
4 | JIANG Z L, GUO N, JIN Y B, et al. Efficient two-party privacy-preserving collaborative k-means clustering protocol supporting both storage and computation outsourcing[J]. Information Sciences, 2020, 518: 168-180. 10.1016/j.ins.2019.12.051 |
5 | WU W, LIU J, WANG H M, et al. Secure and efficient outsourced k-means clustering using fully homomorphic encryption with ciphertext packing technique[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(10): 3424-3437. 10.1109/tkde.2020.2969633 |
6 | MOHASSEL P, ROSULEK M, TRIEU T, et al. Practical privacy-preserving K-means clustering[J]. Proceedings on Privacy Enhancing Technologies, 2020, 2020(4): 414-433. 10.2478/popets-2020-0080 |
7 | LIU Y, MA Z, YAN Z, et al. Privacy-preserving federated k-means for proactive caching in next generation cellular networks[J]. Information Sciences, 2020, 521: 14-31. 10.1016/j.ins.2020.02.042 |
8 | GUO X C, LIN H, WU Y L, et al. A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems[J]. Future Generation Computer Systems, 2020, 113: 407-417. 10.1016/j.future.2020.07.023 |
9 | 张恩,蔡永泉. 理性的安全两方计算协议[J]. 计算机研究与发展, 2013, 50(7): 1409-1417. |
ZHANG E, CAI Y Q. Rational secure two-party computation protocol[J]. Journal of Computer Research and Development, 2013, 50(7): 1409-1417. | |
10 | 程柏良,曾国荪,揭安全. 基于安全多方计算的可信防共谋协议模型[J]. 通信学报, 2011, 32(8): 23-30. 10.3969/j.issn.1000-436X.2011.08.004 |
CHENG B L, ZENG G S, JIE A Q. Trusted coalition-proof protocol model based on secure multi-part computing[J]. Journal on Communications, 2011, 32(8): 23-30. 10.3969/j.issn.1000-436X.2011.08.004 | |
11 | DINUR I, NISSIM K. Revealing information while preserving privacy[C]// Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2003: 202-210. 10.1145/773153.773173 |
12 | DWORK C, NISSIM K. Privacy-preserving datamining on vertically partitioned databases[C]// Proceedings of the 2004 Annual International Cryptology Conference. LNCS 3152. Berlin: Springer, 2004: 528-544. |
13 | DWORK C, McSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]// Proceedings of the 2006 Theory of Cryptography Conference, LNCS 3876. Berlin: Springer, 2006: 265-284. |
14 | McSHERRY F, TALWAR K. Mechanism design via differential privacy[C]// Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science. Piscataway: IEEE, 2007: 94-103. 10.1109/focs.2007.66 |
15 | DWORK C. Differential privacy: a survey of results[C]// Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation, LNCS 4978. Berlin: Springer, 2008: 1-19. |
16 | McSHERRY F D. Privacy integrated queries: an extensible platform for privacy-preserving data analysis[C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2009: 19-30. 10.1145/1559845.1559850 |
17 | GUPTA A, LIGETT K, McSHERRY F, et al. Differentially private combinatorial optimization[C]// Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010: 1106-1125. 10.1137/1.9781611973075.90 |
18 | BLUM A, DWORK C, McSHERRY F, et al. Practical privacy: the SuLQ framework[C]// Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2005: 128-138. 10.1145/1065167.1065184 |
19 | NISSIM K, RASKHODNIKOVA S, SMITH A. Smooth sensitivity and sampling in private data analysis[C]// Proceedings of the 39th Annual ACM Symposium on Theory of Computing. New York: ACM, 2007: 75-84. 10.1145/1250790.1250803 |
20 | DWORK C. A firm foundation for private data analysis[J]. Communications of the ACM, 2011, 54(1): 86-95. 10.1145/1866739.1866758 |
21 | SU D, CAO J N, LI N H, et al. Differentially private k-means clustering and a hybrid approach to private optimization[J]. ACM Transaction on Privacy and Security, 2017, 20(4): No.16. 10.1145/3133201 |
22 | FELDMAN D, XIANG C Y, ZHU R H, et al. Coresets for differentially private k-means clustering and applications to privacy in mobile sensor networks[C]// Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks. New York: ACM, 2017: 3-15. 10.1145/3055031.3055090 |
23 | LU Z G, SHEN H. A convergent differentially private k-means clustering algorithm[C]// Proceedings of the 2019 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 11439. Cham: Springer, 2019: 612-624. |
24 | NI T J, QIAO M H, CHEN Z L, et al. Utility-efficient differentially private K-means clustering based on cluster merging[J]. Neurocomputing, 2021, 424: 205-214. 10.1016/j.neucom.2020.10.051 |
25 | ZHANG E, LI H M, HUANG Y C, et al. Practical multi-party private collaborative k-means clustering[J]. Neurocomputing, 2022, 467: 256-265. 10.1016/j.neucom.2021.09.050 |
26 | XIA C, HUA J Y, TONG W, et al. Distributed K-means clustering guaranteeing local differential privacy[J]. Computers and Security, 2020, 90: No.101699. 10.1016/j.cose.2019.101699 |
27 | MaCQUEEN J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Oakland,CA:University of California Press,1967:281-297. |
28 | 熊平,朱天清,王晓峰. 差分隐私保护及其应用[J]. 计算机学报, 2014, 37(1): 101-122. 10.3724/SP.J.1016.2014.00101 |
XIONG P, ZHU T Q, WANG X F. A survey on differential privacy and applications[J]. Chinese Journal of Computers, 2014, 37(1): 101-122. 10.3724/SP.J.1016.2014.00101 | |
29 | 叶青青,孟小峰,朱敏杰,等. 本地化差分隐私研究综述[J]. 软件学报, 2018, 29(7): 1981-2005. |
YE Q Q, MENG X F, ZHU M J, et al. Survey on local differential privacy[J]. Journal of Software, 2018, 29(7): 1981-2005. | |
30 | WARNER S L. Randomized response: a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60(309): 63-69. 10.1080/01621459.1965.10480775 |
31 | NOFER M, GOMBER P, HINZ O, et al. Blockchain[J]. Business and Information Systems Engineering, 2017, 59(3): 183-187. 10.1007/s12599-017-0467-3 |
32 | CHRISTIDIS K, DEVETSIKIOTIS M. Blockchains and smart contracts for the Internet of Things[J]. IEEE Access, 2016, 4: 2292-2303. 10.1109/access.2016.2566339 |
[1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[2] | Xiaoling SUN, Danhui WANG, Shanshan LI. Dynamic ciphertext sorting and retrieval scheme based on blockchain [J]. Journal of Computer Applications, 2024, 44(8): 2500-2505. |
[3] | Baoyan SONG, Junxiang DING, Junlu WANG, Haolin ZHANG. Consortium blockchain modification method based on chameleon hash and verifiable secret sharing [J]. Journal of Computer Applications, 2024, 44(7): 2087-2092. |
[4] | He HUANG, Yu JIN. Cloud data auditing scheme based on voting and Ethereum smart contracts [J]. Journal of Computer Applications, 2024, 44(7): 2093-2101. |
[5] | Jiao LI, Xiushan ZHANG, Yuanhang NING. Blockchain sharding method for reducing cross-shard transaction proportion [J]. Journal of Computer Applications, 2024, 44(6): 1889-1896. |
[6] | Lipeng ZHAO, Bing GUO. Blockchain consensus improvement algorithm based on BDLS [J]. Journal of Computer Applications, 2024, 44(4): 1139-1147. |
[7] | Meihong CHEN, Lingyun YUAN, Tong XIA. Data classified and graded access control model based on master-slave multi-chain [J]. Journal of Computer Applications, 2024, 44(4): 1148-1157. |
[8] | Gaimei GAO, Jin ZHANG, Chunxia LIU, Weichao DANG, Shangwang BAI. Privacy protection scheme for crowdsourced testing tasks based on blockchain and CP-ABE policy hiding [J]. Journal of Computer Applications, 2024, 44(3): 811-818. |
[9] | Lin SUN, Menghan LIU. K-means clustering based on adaptive cuckoo optimization feature selection [J]. Journal of Computer Applications, 2024, 44(3): 831-841. |
[10] | Haifeng MA, Yuxia LI, Qingshui XUE, Jiahai YANG, Yongfu GAO. Attribute-based encryption scheme for blockchain privacy protection [J]. Journal of Computer Applications, 2024, 44(2): 485-489. |
[11] | Rui GAO, Xuebin CHEN, Zucuan ZHANG. Dynamic social network privacy publishing method for partial graph updating [J]. Journal of Computer Applications, 2024, 44(12): 3831-3838. |
[12] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
[13] | Tingting GAO, Zhongyuan YAO, Miao JIA, Xueming SI. Overview of on-chain and off-chain consistency protection technologies [J]. Journal of Computer Applications, 2024, 44(12): 3658-3668. |
[14] | Miao JIA, Zhongyuan YAO, Weihua ZHU, Tingting GAO, Xueming SI, Xiang DENG. Progress and prospect of zero-knowledge proof enabling blockchain [J]. Journal of Computer Applications, 2024, 44(12): 3669-3677. |
[15] | Kedi NIU, Min LI, Zhongyuan YAO, Xueming SI. Review of blockchain consensus algorithms for internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3678-3687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||