Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 820-826.DOI: 10.11772/j.issn.1001-9081.2022010154
Special Issue: 先进计算
• Advanced computing • Previous Articles Next Articles
Received:
2022-02-14
Revised:
2022-04-14
Accepted:
2022-04-15
Online:
2022-04-21
Published:
2023-03-10
Contact:
Yonghong WU
About author:
XIANG Junxing, born in 1997, M. S. candidate. His research interests include big data, machine learning.
Supported by:
通讯作者:
吴永红
作者简介:
向君幸(1997—),男,重庆人,硕士研究生,主要研究方向:大数据、机器学习CLC Number:
Junxing XIANG, Yonghong WU. Hybrid salp swarm and butterfly optimization algorithm combined with neighborhood centroid opposition-based learning[J]. Journal of Computer Applications, 2023, 43(3): 820-826.
向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 820-826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010154
参数 | 取值 | 参数意义 |
---|---|---|
0.01 | 感觉模态 | |
Ii | 由目标函数计算得到 | 刺激强度,由个体适应度表示 |
幂指数 | ||
切换概率,用于平衡搜索阶段 | ||
惯性权重,用于改良算法的搜索能力 | ||
均匀分布上的随机数,用于邻域重心反向学习 | ||
由 | 种群的重心 | |
高斯扰动中的方差项,根据迭代步骤调整大小,以增加种群的多样性 |
Tab. 1 Parameters in HSSBOA
参数 | 取值 | 参数意义 |
---|---|---|
0.01 | 感觉模态 | |
Ii | 由目标函数计算得到 | 刺激强度,由个体适应度表示 |
幂指数 | ||
切换概率,用于平衡搜索阶段 | ||
惯性权重,用于改良算法的搜索能力 | ||
均匀分布上的随机数,用于邻域重心反向学习 | ||
由 | 种群的重心 | |
高斯扰动中的方差项,根据迭代步骤调整大小,以增加种群的多样性 |
函数类型 | 函数表达式 | 维数 | 范围 | 最优值 |
---|---|---|---|---|
单峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
多峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 |
Tab. 2 Description of benchmark functions
函数类型 | 函数表达式 | 维数 | 范围 | 最优值 |
---|---|---|---|---|
单峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
多峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 |
函数 | 指标 | HSSBOA | HHO | WOA | SSA | BOA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | ||
F1 | mean | 0 | 0 | 3.95E-97 | 9.71E-96 | 3.30E-75 | 1.79E-67 | 1.13E-08 | 9.31E+04 | 1.27E-11 | 1.42E-11 |
std | 0 | 0 | 1.72E-96 | 3.47E-95 | 1.31E-74 | 9.83E-67 | 3.26E-09 | 6.01E+03 | 9.07E-13 | 8.52E-13 | |
F2 | mean | 0 | 0 | 1.29E-49 | 4.58E-49 | 8.71E-01 | 8.07E+00 | 7.02E-01 | 4.15E+00 | 4.97E-09 | 5.34E-09 |
std | 0 | 0 | 3.11E-48 | 1.81E-48 | 1.25E+00 | 2.03E+00 | 3.61E-01 | 3.11E-01 | 3.32E-10 | 2.95E-10 | |
F3 | mean | 0 | 3.33E-296 | 7.87E-49 | 2.48E-47 | 2.04E-51 | 4.52E-47 | 1.34E+17 | — | 4.47E+41 | — |
std | 0 | 0 | 3.11E-48 | 1.28E-46 | 7.04E-51 | 1.37E-46 | 5.69E+17 | — | 1.34E+41 | — | |
F4 | mean | 6.27E-05 | 7.25E-05 | 1.78E-04 | 1.58E-04 | 3.17E-03 | 5.09E-03 | 7.86E-02 | 2.81E+02 | 1.49E-03 | 1.58E-03 |
std | 6.89E-05 | 2.15E-04 | 1.74E-04 | 1.65E-04 | 6.04E-03 | 5.44E-03 | 2.57E-02 | 3.82E+01 | 5.37E-04 | 7.16E-04 | |
F5 | mean | 0 | 0 | 5.05E-98 | 1.16E-94 | 5.44E-73 | 1.82E-68 | 2.40E-01 | 2.15E+05 | 1.13E-11 | 1.46E-11 |
std | 0 | 0 | 2.76E-97 | 4.07E-94 | 1.96E-72 | 9.81E-68 | 2.89E-01 | 1.60E+04 | 8.43E-13 | 9.68E-13 | |
F6 | mean | 0 | 0 | 1.45E-55 | 2.23E-05 | 2.03E-51 | 3.71E-50 | 2.94E+00 | 3.13E+02 | 8.38E-10 | 2.36E-09 |
std | 0 | 0 | 7.93E-55 | 8.65E-05 | 8.29E-51 | 1.90E-49 | 1.51E+00 | 1.33E+01 | 7.55E-10 | 7.59E-10 | |
F7 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 7.80E-03 | 8.70E+02 | 4.62E-12 | 1.65E-11 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 8.50E-03 | 5.82E+01 | 2.73E-12 | 1.10E-12 | |
F8 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 5.26E+01 | 3.18E+03 | 1.93E+01 | 0 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 1.78E+01 | 1.22E+02 | 5.76E+01 | 0 | |
F9 | mean | 0 | 0 | 1.67E-46 | 9.96E+02 | 4.61E+02 | 8.11E+03 | 1.09E+00 | 1.04E+04 | 1.10E-11 | 1.54E-13 |
std | 0 | 0 | 9.08E-46 | 1.76E+03 | 1.05E+02 | 6.00E+02 | 1.18E+00 | 7.07E+02 | 1.08E-12 | 6.41E-13 | |
F10 | mean | 8.88E-16 | 8.88E-16 | 8.88E-16 | 8.88E-16 | 4.44E-15 | 3.49E-15 | 1.91E+00 | 1.43E+01 | 6.06E-09 | 5.58E-09 |
std | 0 | 0 | 0 | 0 | 2.64E-15 | 2.46E-15 | 8.55E-01 | 2.82E-01 | 3.93E-10 | 2.74E-10 |
Tab. 3 Experimental results on benchmark functions
函数 | 指标 | HSSBOA | HHO | WOA | SSA | BOA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | ||
F1 | mean | 0 | 0 | 3.95E-97 | 9.71E-96 | 3.30E-75 | 1.79E-67 | 1.13E-08 | 9.31E+04 | 1.27E-11 | 1.42E-11 |
std | 0 | 0 | 1.72E-96 | 3.47E-95 | 1.31E-74 | 9.83E-67 | 3.26E-09 | 6.01E+03 | 9.07E-13 | 8.52E-13 | |
F2 | mean | 0 | 0 | 1.29E-49 | 4.58E-49 | 8.71E-01 | 8.07E+00 | 7.02E-01 | 4.15E+00 | 4.97E-09 | 5.34E-09 |
std | 0 | 0 | 3.11E-48 | 1.81E-48 | 1.25E+00 | 2.03E+00 | 3.61E-01 | 3.11E-01 | 3.32E-10 | 2.95E-10 | |
F3 | mean | 0 | 3.33E-296 | 7.87E-49 | 2.48E-47 | 2.04E-51 | 4.52E-47 | 1.34E+17 | — | 4.47E+41 | — |
std | 0 | 0 | 3.11E-48 | 1.28E-46 | 7.04E-51 | 1.37E-46 | 5.69E+17 | — | 1.34E+41 | — | |
F4 | mean | 6.27E-05 | 7.25E-05 | 1.78E-04 | 1.58E-04 | 3.17E-03 | 5.09E-03 | 7.86E-02 | 2.81E+02 | 1.49E-03 | 1.58E-03 |
std | 6.89E-05 | 2.15E-04 | 1.74E-04 | 1.65E-04 | 6.04E-03 | 5.44E-03 | 2.57E-02 | 3.82E+01 | 5.37E-04 | 7.16E-04 | |
F5 | mean | 0 | 0 | 5.05E-98 | 1.16E-94 | 5.44E-73 | 1.82E-68 | 2.40E-01 | 2.15E+05 | 1.13E-11 | 1.46E-11 |
std | 0 | 0 | 2.76E-97 | 4.07E-94 | 1.96E-72 | 9.81E-68 | 2.89E-01 | 1.60E+04 | 8.43E-13 | 9.68E-13 | |
F6 | mean | 0 | 0 | 1.45E-55 | 2.23E-05 | 2.03E-51 | 3.71E-50 | 2.94E+00 | 3.13E+02 | 8.38E-10 | 2.36E-09 |
std | 0 | 0 | 7.93E-55 | 8.65E-05 | 8.29E-51 | 1.90E-49 | 1.51E+00 | 1.33E+01 | 7.55E-10 | 7.59E-10 | |
F7 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 7.80E-03 | 8.70E+02 | 4.62E-12 | 1.65E-11 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 8.50E-03 | 5.82E+01 | 2.73E-12 | 1.10E-12 | |
F8 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 5.26E+01 | 3.18E+03 | 1.93E+01 | 0 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 1.78E+01 | 1.22E+02 | 5.76E+01 | 0 | |
F9 | mean | 0 | 0 | 1.67E-46 | 9.96E+02 | 4.61E+02 | 8.11E+03 | 1.09E+00 | 1.04E+04 | 1.10E-11 | 1.54E-13 |
std | 0 | 0 | 9.08E-46 | 1.76E+03 | 1.05E+02 | 6.00E+02 | 1.18E+00 | 7.07E+02 | 1.08E-12 | 6.41E-13 | |
F10 | mean | 8.88E-16 | 8.88E-16 | 8.88E-16 | 8.88E-16 | 4.44E-15 | 3.49E-15 | 1.91E+00 | 1.43E+01 | 6.06E-09 | 5.58E-09 |
std | 0 | 0 | 0 | 0 | 2.64E-15 | 2.46E-15 | 8.55E-01 | 2.82E-01 | 3.93E-10 | 2.74E-10 |
函数 | 检验值 | BOA | SSA | HHO | WOA |
---|---|---|---|---|---|
F1 | t-value | 5.787 5 | 6.056 2 | 2.516 4 | 3.246 1 |
p-value | 0.000 0 | 0.000 0 | 0.025 5 | 0.000 0 | |
F2 | t-value | 6.526 3 | 8.342 1 | 3.632 5 | 8.894 1 |
p-value | 0.000 0 | 0.000 0 | 0.000 2 | 0.000 0 | |
F3 | t-value | 12.513 0 | 11.135 9 | 4.421 5 | 3.625 1 |
p-value | 0.000 0 | 0.000 0 | 0.001 4 | 0.005 2 | |
F4 | t-value | 2.589 3 | 4.153 9 | 2.018 0 | 2.626 4 |
p-value | 0.041 8 | 0.002 1 | 0.243 1 | 0.038 9 | |
F5 | t-value | 8.891 4 | 9.354 0 | 1.634 0 | 2.912 4 |
p-value | 0.000 1 | 0.000 3 | 0.270 1 | 0.024 5 | |
F6 | t-value | 7.564 3 | 9.159 8 | 2.235 6 | 3.019 9 |
p-value | 0.000 0 | 0.000 1 | 0.002 3 | 0.002 2 | |
F7 | t-value | 7.873 2 | 9.152 6 | 0.000 0 | 0.000 0 |
p-value | 0.000 0 | 0.000 1 | 0.000 0 | 0.000 0 | |
F8 | t-value | 12.155 7 | 11.986 1 | 0.000 0 | 0.000 0 |
p-value | 0.000 4 | 0.000 1 | 0.000 0 | 0.000 0 | |
F9 | t-value | 8.151 5 | 11.135 5 | 3.155 1 | 11.611 5 |
p-value | 0.000 0 | 0.000 1 | 0.005 3 | 0.000 0 | |
F10 | t-value | 7.145 7 | 10.366 1 | 0.000 0 | 1.662 1 |
p-value | 0.000 2 | 0.000 0 | 0.000 0 | 0.230 1 |
Tab. 4 Comparison of t test between HSSBOA and other algorithms
函数 | 检验值 | BOA | SSA | HHO | WOA |
---|---|---|---|---|---|
F1 | t-value | 5.787 5 | 6.056 2 | 2.516 4 | 3.246 1 |
p-value | 0.000 0 | 0.000 0 | 0.025 5 | 0.000 0 | |
F2 | t-value | 6.526 3 | 8.342 1 | 3.632 5 | 8.894 1 |
p-value | 0.000 0 | 0.000 0 | 0.000 2 | 0.000 0 | |
F3 | t-value | 12.513 0 | 11.135 9 | 4.421 5 | 3.625 1 |
p-value | 0.000 0 | 0.000 0 | 0.001 4 | 0.005 2 | |
F4 | t-value | 2.589 3 | 4.153 9 | 2.018 0 | 2.626 4 |
p-value | 0.041 8 | 0.002 1 | 0.243 1 | 0.038 9 | |
F5 | t-value | 8.891 4 | 9.354 0 | 1.634 0 | 2.912 4 |
p-value | 0.000 1 | 0.000 3 | 0.270 1 | 0.024 5 | |
F6 | t-value | 7.564 3 | 9.159 8 | 2.235 6 | 3.019 9 |
p-value | 0.000 0 | 0.000 1 | 0.002 3 | 0.002 2 | |
F7 | t-value | 7.873 2 | 9.152 6 | 0.000 0 | 0.000 0 |
p-value | 0.000 0 | 0.000 1 | 0.000 0 | 0.000 0 | |
F8 | t-value | 12.155 7 | 11.986 1 | 0.000 0 | 0.000 0 |
p-value | 0.000 4 | 0.000 1 | 0.000 0 | 0.000 0 | |
F9 | t-value | 8.151 5 | 11.135 5 | 3.155 1 | 11.611 5 |
p-value | 0.000 0 | 0.000 1 | 0.005 3 | 0.000 0 | |
F10 | t-value | 7.145 7 | 10.366 1 | 0.000 0 | 1.662 1 |
p-value | 0.000 2 | 0.000 0 | 0.000 0 | 0.230 1 |
类别 | BOA | SSA | HHO | WOA |
---|---|---|---|---|
性能比HSSBOA低的个数 | 10 | 10 | 7 | 8 |
性能与HSSBOA相同的个数 | 0 | 0 | 3 | 2 |
性能比HSSBOA高的个数 | 0 | 0 | 0 | 0 |
Tab. 5 Comparison results of t-test
类别 | BOA | SSA | HHO | WOA |
---|---|---|---|---|
性能比HSSBOA低的个数 | 10 | 10 | 7 | 8 |
性能与HSSBOA相同的个数 | 0 | 0 | 3 | 2 |
性能比HSSBOA高的个数 | 0 | 0 | 0 | 0 |
算法 | MAE | 排名 |
---|---|---|
HSSBOA | 4.75E-07 | 1 |
HHO | 1.66E-05 | 2 |
WOA | 2.09E-05 | 3 |
SSA | 1.27E-05 | 4 |
BOA | 8.10E-04 | 5 |
Tab. 6 MAE ranking of HSSBOA and other algorithms
算法 | MAE | 排名 |
---|---|---|
HSSBOA | 4.75E-07 | 1 |
HHO | 1.66E-05 | 2 |
WOA | 2.09E-05 | 3 |
SSA | 1.27E-05 | 4 |
BOA | 8.10E-04 | 5 |
算法 | MAE | 相较于HSSBOA的变化 |
---|---|---|
HSSBOA | 4.75E-07 | — |
HSSBOA\改进SSA | 3.92E-06 | +3.45E-06 |
HSSBOA\邻域重心反向学习 | 1.02E-06 | +5.44E-07 |
HSSBOA\高斯扰动 | 6.52E-07 | +1.77E-07 |
HSSBOA\动态切换概率 | 8.83E-07 | +4.08E-07 |
Tab. 7 Comparison of ablation experimental results
算法 | MAE | 相较于HSSBOA的变化 |
---|---|---|
HSSBOA | 4.75E-07 | — |
HSSBOA\改进SSA | 3.92E-06 | +3.45E-06 |
HSSBOA\邻域重心反向学习 | 1.02E-06 | +5.44E-07 |
HSSBOA\高斯扰动 | 6.52E-07 | +1.77E-07 |
HSSBOA\动态切换概率 | 8.83E-07 | +4.08E-07 |
算法 | 最优变量 | 最优值/kg | ||
---|---|---|---|---|
HSSBOA | 0.053 4 | 0.296 2 | 10.916 4 | 0.010 90 |
PSO | 0.051 7 | 0.357 6 | 11.244 5 | 0.012 67 |
HHO | 0.051 8 | 0.359 3 | 11.138 9 | 0.012 67 |
WOA | 0.051 2 | 0.345 2 | 12.004 0 | 0.012 68 |
数学优化 | 0.503 4 | 0.399 2 | 9.185 4 | 0.012 73 |
约束校正 | 0.050 0 | 0.315 9 | 14.250 0 | 0.012 83 |
Tab. 8 Result comparison of solving spring design problem by different methods
算法 | 最优变量 | 最优值/kg | ||
---|---|---|---|---|
HSSBOA | 0.053 4 | 0.296 2 | 10.916 4 | 0.010 90 |
PSO | 0.051 7 | 0.357 6 | 11.244 5 | 0.012 67 |
HHO | 0.051 8 | 0.359 3 | 11.138 9 | 0.012 67 |
WOA | 0.051 2 | 0.345 2 | 12.004 0 | 0.012 68 |
数学优化 | 0.503 4 | 0.399 2 | 9.185 4 | 0.012 73 |
约束校正 | 0.050 0 | 0.315 9 | 14.250 0 | 0.012 83 |
算法 | 最优变量 | 最优值/kg | |||
---|---|---|---|---|---|
HSSBOA | 0.794 2 | 0.406 3 | 40.895 1 | 177.631 5 | 5 768.695 7 |
GWO | 0.812 5 | 0.434 5 | 42.089 2 | 176.758 7 | 6 051.563 9 |
HHO | 0.817 6 | 0.407 3 | 42.091 7 | 176.719 6 | 6 000.462 6 |
WOA | 0.812 5 | 0.437 5 | 42.098 3 | 176.639 0 | 6 059.741 0 |
拉格朗日乘数 | 1.125 0 | 0.625 0 | 58.291 0 | 43.690 0 | 7 198.042 8 |
分支界 | 1.125 0 | 0.625 0 | 47.700 0 | 117.701 0 | 8 129.103 6 |
Tab. 9 Result comparison of solving pressure vessel design problem by different methods
算法 | 最优变量 | 最优值/kg | |||
---|---|---|---|---|---|
HSSBOA | 0.794 2 | 0.406 3 | 40.895 1 | 177.631 5 | 5 768.695 7 |
GWO | 0.812 5 | 0.434 5 | 42.089 2 | 176.758 7 | 6 051.563 9 |
HHO | 0.817 6 | 0.407 3 | 42.091 7 | 176.719 6 | 6 000.462 6 |
WOA | 0.812 5 | 0.437 5 | 42.098 3 | 176.639 0 | 6 059.741 0 |
拉格朗日乘数 | 1.125 0 | 0.625 0 | 58.291 0 | 43.690 0 | 7 198.042 8 |
分支界 | 1.125 0 | 0.625 0 | 47.700 0 | 117.701 0 | 8 129.103 6 |
1 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks, Volume 4. Piscataway: IEEE, 1995: 1942-1948. 10.1109/icnn.1995.488968 |
2 | DORIGO M, DI CARO G. Ant colony optimization: a new meta-heuristic[C]// Proceedings of the 1999 Congress on Evolutionary Computation, Volume 2. Piscataway: IEEE, 1999: 1470-1477. 10.1109/cec.1999.782657 |
3 | KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471. 10.1007/s10898-007-9149-x |
4 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
5 | ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734. 10.1007/s00500-018-3102-4 |
6 | ARORA S, ANAND P. Binary butterfly optimization approaches for feature selection[J]. Expert Systems with Applications, 2019, 116: 147-160. 10.1016/j.eswa.2018.08.051 |
7 | ARORA S, SINGH S. An improved butterfly optimization algorithm with chaos[J]. Journal of Intelligent and Fuzzy Systems, 2017, 32(1): 1079-1088. 10.3233/jifs-16798 |
8 | SINGH B, ANAND P. A novel adaptive butterfly optimization algorithm[J]. International Journal of Computational Materials Science and Engineering, 2018, 7(4): No.1850026. |
9 | MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. 10.1016/j.advengsoft.2017.07.002 |
10 | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation jointly with the 2005 International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Volume I. Piscataway: IEEE, 2005: 695-701. 10.1109/cimca.2005.1631428 |
11 | RAHNAMAYAN S, JESUTHASAN J, BOURENNANI F, et al. Computing opposition by involving entire population[C]// Proceedings of the 2014 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2014: 1800-1807. 10.1109/cec.2014.6900329 |
12 | 周凌云,丁立新,彭虎,等. 一种邻域重心反向学习的粒子群优化算法[J]. 电子学报, 2017, 45(11): 2815-2824. 10.3969/j.issn.0372-2112.2017.11.032 |
ZHOU L Y, DING L X, PENG H, et al. Neighborhood centroid opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2017, 45(11): 2815-2824. 10.3969/j.issn.0372-2112.2017.11.032 | |
13 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. 10.1016/j.advengsoft.2016.01.008 |
14 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. 10.1016/j.future.2019.02.028 |
15 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. 10.1109/4235.585893 |
16 | 李炳宇,萧蕴诗,汪镭. PSO算法在工程优化问题中的应用[J]. 计算机工程与应用, 2004, 40(18): 74-76. 10.3321/j.issn:1002-8331.2004.18.024 |
LI B Y, XIAO Y S, WANG L. Application of particle swarm optimization algorithm in engineering optimization problem[J]. Computer Engineering and Applications, 2004, 40(18): 74-76. 10.3321/j.issn:1002-8331.2004.18.024 | |
17 | BELEGUNDU A D, ARORA J S. A study of mathematical programming methods for structural optimization. Part I: theory[J]. International Journal for Numerical Methods in Engineering, 1985, 21(9): 1583-1599. 10.1002/nme.1620210904 |
18 | YANG X S. Nature-inspired Metaheuristic Algorithms[M]. 2nd ed. Frome: Luniver Press, 2010: 29-52. |
19 | KANNAN B K, KRAMER S N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design[J]. Journal of Mechanical Design, 1994, 116(2): 405-411. 10.1115/1.2919393 |
20 | SANDGREN E. Nonlinear integer and discrete programming in mechanical design optimization[J]. Journal of Mechanical Design, 1990, 112(2): 223-229. 10.1115/1.2912596 |
[1] | Xiuxi WEI, Maosong PENG, Huajuan HUANG. Node coverage optimization of wireless sensor network based on multi-strategy improved butterfly optimization algorithm [J]. Journal of Computer Applications, 2024, 44(4): 1009-1017. |
[2] | Heming JIA, Shanglong LI, Lizhen CHEN, Qingxin LIU, Di WU, Rong ZHENG. Remora optimization algorithm based on chaotic host switching mechanism [J]. Journal of Computer Applications, 2023, 43(6): 1759-1767. |
[3] | Liang CHEN, Xianfeng TANG. Improved sine cosine algorithm for optimizing feature selection and data classification [J]. Journal of Computer Applications, 2022, 42(6): 1852-1861. |
[4] | Yuxian DUAN, Changyun LIU. Sparrow search algorithm based on Sobol sequence and crisscross strategy [J]. Journal of Computer Applications, 2022, 42(1): 36-43. |
[5] | CHEN Jun, HE Qing. Improved butterfly optimization algorithm based on cosine similarity [J]. Journal of Computer Applications, 2021, 41(9): 2668-2677. |
[6] | LI Mengmeng, QIN Wei, LIU Yi, DIAO Xingchun. Hybrid ant colony optimization algorithm with brain storm optimization [J]. Journal of Computer Applications, 2021, 41(8): 2412-2417. |
[7] | TANG Andi, HAN Tong, XU Dengwu, XIE lei. Chaotic elite Harris hawks optimization algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2265-2272. |
[8] | TANG Yanqiang, LI Chenghai, SONG Yafei. Network security situation prediction based on improved particle swarm optimization and extreme learning machine [J]. Journal of Computer Applications, 2021, 41(3): 768-773. |
[9] | ZHANG Xin, ZOU Dexuan, SHEN Xin. Hybrid two-norm particle swarm optimization algorithm with crossover term [J]. Journal of Computer Applications, 2018, 38(8): 2148-2156. |
[10] | HAN Xue, CHENG Qifeng, ZHAO Tingting, ZHANG Limin. Improved particle swarm optimization based on re-sampling of particle filter and mutation [J]. Journal of Computer Applications, 2016, 36(4): 1008-1014. |
[11] | AI Bing, DONG Minggang. Improved particle swarm optimization algorithm based on Gaussian disturbance and natural selection [J]. Journal of Computer Applications, 2016, 36(3): 687-691. |
[12] | YU Quan, SUN Shunyuan, XU Baoguo, CHEN Shujuan. Node localization in wireless sensor networks based on improved particle swarm optimization [J]. Journal of Computer Applications, 2015, 35(6): 1519-1522. |
[13] | WU Jiagao, QIAN Keyu, LIU Min, LIU Linfeng. Hybrid trajectory compression algorithm based on multiple spatiotemporal characteristics [J]. Journal of Computer Applications, 2015, 35(5): 1209-1212. |
[14] | CHEN Shouwen. Improved particle swarm optimization algorithm based on centroid and self-adaptive exponential inertia weight [J]. Journal of Computer Applications, 2015, 35(3): 675-679. |
[15] | BAI Liang WANG Lei. Optimization model and algorithm for production order acceptance problem of hot-rolled bar [J]. Journal of Computer Applications, 2014, 34(8): 2419-2423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||