[1] 张志勇, 张文博, 杨慧, 等. 网络安全态势预测研究综述[J]. 通信技术,2019,52(7):1713-1721.(ZHANG Z Y,ZHANG W B, YANG H,et al. A survey of research on network threat prediction[J]. Communications Technology,2019,52(7):1713-1721.) [2] 余建, 林志兴, 谢彬. 灰色关联模型的网络安全态势感识预测方法[J]. 实验室研究与探索,2019,38(2):31-35, 70.(YU J, LIN Z X,XIE B. Network security situation awareness prediction method based on grey correlation model[J]. Research and Exploration in Laboratory,2019,38(2):31-35,70.) [3] 张然, 刘敏, 张启坤, 等. 基于SOA_BP神经网络的网络安全态势预测算法研究[J]. 微电子学与计算机,2020,37(6):62-65, 69.(ZHANG R,LIU M,ZHANG Q K,et al. Research on network security situation prediction algorithm based on SOA_BP neural network[J]. Microelectronics and Computer,2020,37(6):62-65,69.) [4] 刘俊男,陈占芳,姜晓明,等. 用于网络安全态势预测的SAGPSO-SVM模型研究[J]. 长春理工大学学报(自然科学版), 2019,42(6):126-128.(LIU J N,CHEN Z F,JIANG X M,et al. Research on SAGPSO-SVM model for network security situation prediction[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2019,42(6):126-128.) [5] HU G,ZHOU Z,HU C,et al. Hidden behavior prediction of complex system based on time-delay belief rule base forecasting model[J]. Knowledge-Based Systems,2020,203:No. 106147. [6] HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2005,70(1/2/3):489-501. [7] FENG H,YIN C,WENG W,et al. Robotic excavator trajectory control using an improved GA based PID controller[J]. Mechanical Systems and Signal Processing,2018,105:153-168. [8] LI X,WU D,HE J,et al. An improved method of particle swarm optimization for path planning of mobile robot[J]. Journal of Control Science and Engineering,2020,2020:No. 3857894. [9] 孙卫喜. 用于网络安全态势预测的粒子群与支持向量机算法研究[J]. 计算机应用与软件,2019,36(6):308-316.(SUN W X. PSO and SVM for network security situation prediction[J]. Computer Applications and Software,2019,36(6):308-316.) [10] WANG X,WANG C,LI Q. Short-term wind power prediction using GA-ELM[J]. The Open Electrical and Electronic Engineering Journal,2017,11:48-56. [11] 蒋建东, 余沣, 董存, 等. 基于PSO与ELM组合算法的短期光伏发电功率预测模型[J]. 郑州大学学报(理学版),2019,51(3):120-126.(JIANG J D,YU F,DONG C,et al. A short-term photovoltaic power forecasting model based on PSO and ELM combined algorithm[J]. Journal of Zhengzhou University(Natural Science Edition),2019,51(3):120-126.) [12] KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway:IEEE,1995:1942-1948. [13] 魏勇, 赵开新, 王东署. 改进粒子群算法在移动机器人路径规划中的应用[J]. 火力与指挥控制,2018,43(2):41-43.(WEI Y,ZHAO K X,WANG D S. Application of improved particle swarm optimization algorithm in path planning of mobile robot[J]. Fire Control and Command Control,2018,43(2):41-43.) [14] 黄轩, 张军, 詹志辉. 基于随机惯量权重的快速粒子群优化算法[J]. 计算机工程与设计,2009,30(3):647-650,663. (HUANG X,ZHANG J,ZHAN Z H. Faster particle swarm optimization with random inertia weight[J]. Computer Engineering and Design,2009,30(3):647-650,663.) [15] RATNAWEERA A,HALGAMUGE S K,WATSON H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):240-255. [16] 江洋, 李成海, 魏晓辉, 等. 改进PSO优化RBF的网络安全态势预测研究[J]. 测控技术,2018,37(5):56-60.(JIANG Y,LI C H,WEI X H,et al. Research on network security situation prediction based on RBF optimized by improved PSO[J]. Measurement and Control Technology,2018,37(5):56-60.) |