[1] XU G, YU G. On convergence analysis of particle swarm optimization algorithm[J]. Journal of Computational and Applied Mathematics, 2018, 340:709-717. [2] 胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. (HU W, LI Z S. A simpler and more effective particle swarm optimization algorithm[J]. Journal of Software, 2007, 18(4):861-868.) [3] LI S-F, CHENG C-Y. Particle swarm optimization with fitness adjustment parameters[J]. Computers & Industrial Engineering, 2017, 113:831-841. [4] 周俊,陈璟华,刘国祥,等. 粒子群优化算法中惯性权重综述[J].广东电力,2013,26(7):6-12. (ZHOU J, CHEN J H, LIU G X, et al. Summary on inertia weight in particle swarm optimization algorithm[J]. Guangdong Electric Power, 2013, 26(7):6-12.) [5] NETJINDA N, ACHALAKUL T, SIRINAOVAKUL B. Particle swarm optimization inspired by starling flock behavior[J]. Applied Soft Computing, 2015, 35:411-422. [6] LIU Q, WEI W, YUAN H, et al. Topology selection for particle swarm optimization[J]. Information Sciences, 2016, 363:154-173. [7] WANG L, YANG B, ORCHARD J. Particle swarm optimization using dynamic tournament topology[J]. Applied Soft Computing, 2016, 48:584-596. [8] ZOU D, LI S, LI Z, et al. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses[J]. Energy Conversion and Management, 2017, 139:45-70. [9] 赵志刚,林玉娇,尹兆远.基于自适应惯性权重的均值粒子群优化算法[J].计算机工程与科学,2016,38(3):501-506. (ZHAO Z G, LIN Y J, YIN Z Y. A mean particle swarm optimization algorithm based on adaptive inertia weight[J]. Computer Engineering & Science, 2016, 38(3):501-506.) [10] 羌晓清,景博,邓森,等.基于模拟退火粒子群算法的不可靠测试点优化[J].计算机应用,2015,35(4):1071-1074. (QIANG X Q, JING B, DENG S, et al. Test point optimization under unreliable test based on simulated annealing particle swarm optimization[J]. Journal of Computer Applications, 2015, 35(4):1071-1074.) [11] 汪冲,李俊,李波,等.改进的蚁群与粒子群混合算法求解旅行商问题[J].计算机仿真,2016,33(11):274-279. (WANG C, LI J, LI B, et al. Improved ant colony - particles swarm hybrid algorithm for solving TSP [J]. Computer Simulation, 2016, 33(11): 274-279.) [12] 尚俊娜,盛林,程涛,等.基于LQI权重和改进粒子群算法的室内定位方法[J].传感技术学报,2017,30(2):284-290. (SHANG J N, SHENG L, CHENG T, et al. The indoor localization based on LQI weight and improved particle swarm optimization algorithm [J]. Chinese Journal of Sensors and Actuators, 2017, 30(2): 284-290.) [13] WANG E, JIA C, TONG G, et al. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm [J]. Advances in Space Research, 2018, 61(5): 1260-1272. [14] CLERC M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [C]// CEC 1999: Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 1999: 1951-1957. [15] KIRAN M S. Particle swarm optimization with a new update mechanism [J]. Applied Soft Computing, 2017, 60: 670-678. [16] ZHANG X, ZOU D, SHEN X. A simplified and efficient gravitational search algorithm for unconstrained optimization problems [C]// ICVISP 2017: Proceedings of the 2017 International Conference on Vision, Image and Signal Processing. Washington, DC: IEEE Computer Society, 2017: 11-17. [17] 王东风,孟丽.粒子群优化算法的性能分析和参数选择[J].自动化学报,2016,42(10):1552-1561. (WANG D F, MENG L. Performance analysis and parameter selection of PSO algorithms [J]. Acta Automatica Sinica, 2016, 42(10): 1552-1561.) [18] 孙湘,周大为,张希望.惯性权重粒子群算法模型收敛性分析及参数选择[J].计算机工程与设计,2010,31(18):4068-4071. (SUN X, ZHOU D W, ZHANG X W. Convergence analysis and parameter selection of PSO model with inertia weight [J]. Computer Engineering and Design, 2010, 31(18): 4068-4071.) |