Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (6): 1683-1688.DOI: 10.11772/j.issn.1001-9081.2021081417
Special Issue: 2021年全国开放式分布与并行计算学术年会(DPCS 2021)论文
• National Open Distributed and Parallel Computing Conference 2021 (DPCS 2021) • Previous Articles Next Articles
Tengyue HAN1, Shaozhang NIU1(
), Wen ZHANG2
Received:2021-08-06
Revised:2021-10-15
Accepted:2021-10-29
Online:2022-06-22
Published:2022-06-10
Contact:
Shaozhang NIU
About author:HAN Tengyue, born in 1990, Ph. D. candidate. Her research interests include recommendation algorithm, data mining.Supported by:通讯作者:
牛少彰
作者简介:韩滕跃(1990—),女,河北衡水人,博士研究生,主要研究方向:推荐算法、数据挖掘基金资助:CLC Number:
Tengyue HAN, Shaozhang NIU, Wen ZHANG. Multimodal sequential recommendation algorithm based on contrastive learning[J]. Journal of Computer Applications, 2022, 42(6): 1683-1688.
韩滕跃, 牛少彰, 张文. 基于对比学习的多模态序列推荐算法[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1683-1688.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081417
| 数据集 | 用户 数目 | 商品 数目 | 交互 数目 | 类别 数目 | 品牌 数目 |
|---|---|---|---|---|---|
| 衣物 | 39 386 | 23 010 | 278 406 | 715 | 3 964 |
| 手机 | 27 804 | 10 192 | 191 396 | 49 | 5 418 |
Tab. 1 Statistics of datasets for experiments
| 数据集 | 用户 数目 | 商品 数目 | 交互 数目 | 类别 数目 | 品牌 数目 |
|---|---|---|---|---|---|
| 衣物 | 39 386 | 23 010 | 278 406 | 715 | 3 964 |
| 手机 | 27 804 | 10 192 | 191 396 | 49 | 5 418 |
| 参数名称 | 参数值 |
|---|---|
| Batch_size(visual) | 100 |
| Learning_rate(visual) | 0.000 1 |
| 0.5 | |
| Image_size | (96,96,3) |
| Feature_dimension | 50 |
| Layers_of_RNN | 1 |
| Batch_size | 200 |
| Initial_learning_rate | 0.01 |
| Step_size | 5 |
Tab. 2 Experimental parameter setting
| 参数名称 | 参数值 |
|---|---|
| Batch_size(visual) | 100 |
| Learning_rate(visual) | 0.000 1 |
| 0.5 | |
| Image_size | (96,96,3) |
| Feature_dimension | 50 |
| Layers_of_RNN | 1 |
| Batch_size | 200 |
| Initial_learning_rate | 0.01 |
| Step_size | 5 |
| 数据集 | 算法 | Hit-Ratio@10 | NDCG@10 |
|---|---|---|---|
| 衣物 | VBPR | 0.175 | 0.087 |
| MV-RNN | 0.342 | 0.199 | |
| GRU4Rec | 0.276 | 0.156 | |
| Caser | 0.283 | 0.162 | |
| SASRec | 0.382 | 0.227 | |
| BERT4Rec | 0.387 | 0.233 | |
| LESSR | 0.396 | 0.244 | |
| 本文算法 | 0.423 | 0.261 | |
| 手机 | VBPR | 0.278 | 0.156 |
| MV-RNN | 0.535 | 0.332 | |
| GRU4Rec | 0.441 | 0.270 | |
| Caser | 0.497 | 0.317 | |
| SASRec | 0.565 | 0.361 | |
| BERT4Rec | 0.578 | 0.367 | |
| LESSR | 0.583 | 0.374 | |
| 本文算法 | 0.599 | 0.383 |
Tab. 3 Comparison with classical sequential recommendation algorithms
| 数据集 | 算法 | Hit-Ratio@10 | NDCG@10 |
|---|---|---|---|
| 衣物 | VBPR | 0.175 | 0.087 |
| MV-RNN | 0.342 | 0.199 | |
| GRU4Rec | 0.276 | 0.156 | |
| Caser | 0.283 | 0.162 | |
| SASRec | 0.382 | 0.227 | |
| BERT4Rec | 0.387 | 0.233 | |
| LESSR | 0.396 | 0.244 | |
| 本文算法 | 0.423 | 0.261 | |
| 手机 | VBPR | 0.278 | 0.156 |
| MV-RNN | 0.535 | 0.332 | |
| GRU4Rec | 0.441 | 0.270 | |
| Caser | 0.497 | 0.317 | |
| SASRec | 0.565 | 0.361 | |
| BERT4Rec | 0.578 | 0.367 | |
| LESSR | 0.583 | 0.374 | |
| 本文算法 | 0.599 | 0.383 |
| 1 | 邓凯,黄佳进,秦进. 基于物品的统一推荐模型[J]. 计算机应用, 2020, 40(2):530-534. 10.11772/j.issn.1001-9081.2019101791 |
| DENG K, HUNAG J J, QIN J. Item-based unified recommendation model[J]. Journal of Computer Applications, 2020, 40(2): 530-534. 10.11772/j.issn.1001-9081.2019101791 | |
| 2 | 张文龙,钱付兰,陈洁,等. 基于双重最相关注意力网络的协同过滤推荐算法[J]. 计算机应用, 2020, 40(12):3445-3450. 10.11772/j.issn.1001-9081.2020061023 |
| ZHANG W L, QIAN F L, CHEN J, et al. Collaborative filtering recommendation algorithm based on dual most relevant attention network[J]. Journal of Computer Applications, 2020, 40(12): 3445-3450. 10.11772/j.issn.1001-9081.2020061023 | |
| 3 | 郭宁宁,王宝亮,侯永宏,等. 融合社交网络特征的协同过滤推荐算法[J]. 计算机科学与探索, 2018, 12(2):208-217. 10.3778/j.issn.1673-9418.1702012 |
| GUO N N, WANG B L, HOU Y H, et al. Collaborative filtering recommendation algorithm based on characteristics of social network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 208-217. 10.3778/j.issn.1673-9418.1702012 | |
| 4 | 孙金杨,刘柏嵩,任豪,等. NHRec:一种基于长短期兴趣的神经混合推荐模型[J]. 小型微型计算机系统, 2020, 41(11): 2298-2302. 10.3969/j.issn.1000-1220.2020.11.010 |
| SUN J Y, LIU B S, REN H, et al. Neural hybrid recommendation model based on long-term and short-term interests[J]. Journal of Chinese Computer Systems, 2020, 41(11): 2298-2302. 10.3969/j.issn.1000-1220.2020.11.010 | |
| 5 | 欧辉思,曹健. 面向跨领域的推荐系统研究现状与趋势[J]. 小型微型计算机系统, 2016, 37(7):1411-1416. 10.3969/j.issn.1000-1220.2016.07.008 |
| OU H S, CAO J. Survey on research and progress of cross-domain recommendation[J]. Journal of Chinese Computer Systems, 2016, 37(7): 1411-1416. 10.3969/j.issn.1000-1220.2016.07.008 | |
| 6 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29) [2021-06-30].. 10.1145/3269206.3271761 |
| 7 | YU F, LIU Q, WU S, et al. A dynamic recurrent model for next basket recommendation[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 729-732. 10.1145/2911451.2914683 |
| 8 | 黄立威,江碧涛,吕守业,等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647. 10.11897/SP.J.1016.2018.01619 |
| HUANG L W, JIANG B T, LYU S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. 10.11897/SP.J.1016.2018.01619 | |
| 9 | McAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52. 10.1145/2766462.2767755 |
| 10 | HE R N, McAULEY J. VBPR: visual Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 30th Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 144-150. |
| 11 | HAN X T, WU Z X, JIANG Y G, et al. Learning fashion compatibility with bidirectional LSTMs[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 1078-1086. 10.1145/3123266.3123394 |
| 12 | CHEN J Y, ZHANG H W, HE X N, et al. Attentive collaborative filtering: multimedia recommendation with item- and component-level attention[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 335-344. 10.1145/3077136.3080797 |
| 13 | HE X N, CHEN T, KAN M Y, et al. TriRank: review-aware explainable recommendation by modeling aspects[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 1661-1670. 10.1145/2806416.2806504 |
| 14 | ZHANG Y F, AI Q Y, CHEN X, et al. Joint representation learning for top-N recommendation with heterogeneous information sources[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1449-1458. 10.1145/3132847.3132892 |
| 15 | CHENG Z Y, DING Y, ZHU L, et al. Aspect-aware latent factor model: rating prediction with ratings and reviews[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 639-648. 10.1145/3178876.3186145 |
| 16 | LI C L, NIU X C, LUO X Y, et al. A review-driven neural model for sequential recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2866-2872. 10.24963/ijcai.2019/397 |
| 17 | CHEN X, CHEN H X, XU H T, et al. Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 765-774. 10.1145/3331184.3331254 |
| 18 | WEI Y W, WANG X, NIE L Q, et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1437-1445. 10.1145/3343031.3351034 |
| 19 | CUI Q, WU S, LIU Q, et al. MV-RNN: a multi-view recurrent neural network for sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(2): 317-331. 10.1109/tkde.2018.2881260 |
| 20 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. 10.48550/arXiv.2002.05709 |
| 21 | LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[EB/OL]. (2015-10-17) [2021-06-30]. . |
| 22 | GERS F A, SCHMIDHUBER J. Recurrent nets that time and count[C]// Proceedings of the 2000 IEEE-INNS-ENNS International Joint Conference on Neural Networks. Piscataway: IEEE, 2000: 189-194. 10.1109/ijcnn.2000.861302 |
| 23 | HE R N, KANG W C, McAULEY J. Translation-based recommendation[C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 161-169. 10.1145/3109859.3109882 |
| 24 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569 |
| 25 | TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573. 10.1145/3159652.3159656 |
| 26 | KANG W C, McAULEY J J. Self-attentive sequential recommendation[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. 10.1109/icdm.2018.00035 |
| 27 | SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450. 10.1145/3357384.3357895 |
| 28 | CHEN T W, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1172-1180. 10.1145/3394486.3403170 |
| [1] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
| [2] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
| [3] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
| [4] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. |
| [5] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
| [6] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
| [7] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
| [8] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
| [9] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
| [10] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
| [11] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
| [12] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
| [13] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
| [14] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
| [15] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||