Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2319-2325.DOI: 10.11772/j.issn.1001-9081.2023081207
• Artificial intelligence • Next Articles
Zheyuan SHEN, Keke YANG, Jing LI()
Received:
2023-09-06
Revised:
2023-11-07
Accepted:
2023-11-13
Online:
2024-08-22
Published:
2024-08-10
Contact:
Jing LI
About author:
SHEN Zheyuan, born in 1998, M. S. candidate. His researchinterests include federated learning.Supported by:
通讯作者:
李京
作者简介:
沈哲远(1998—),男,浙江嘉兴人,硕士研究生,主要研究方向:联邦学习基金资助:
CLC Number:
Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network[J]. Journal of Computer Applications, 2024, 44(8): 2319-2325.
沈哲远, 杨珂珂, 李京. 基于双流神经网络的个性化联邦学习方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2319-2325.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081207
算法 | 准确率 | |
---|---|---|
M=20 | M=50 | |
FedAvg | 0.736 2 | 0.668 9 |
FedProx | 0.732 0 | 0.668 2 |
FedMax | 0.766 5 | 0.712 5 |
LG-FedAvg | 0.794 4 | 0.741 5 |
FedALA | 0.713 1 | 0.706 1 |
FedDual(均匀) | 0.760 7 | 0.721 6 |
FedDual(伪标签) | 0.822 0 | 0.782 0 |
FedDual(训练集) | 0.840 7 | 0.823 0 |
Tab. 1 Accuracy comparison of optimization algorithms under different client numbers
算法 | 准确率 | |
---|---|---|
M=20 | M=50 | |
FedAvg | 0.736 2 | 0.668 9 |
FedProx | 0.732 0 | 0.668 2 |
FedMax | 0.766 5 | 0.712 5 |
LG-FedAvg | 0.794 4 | 0.741 5 |
FedALA | 0.713 1 | 0.706 1 |
FedDual(均匀) | 0.760 7 | 0.721 6 |
FedDual(伪标签) | 0.822 0 | 0.782 0 |
FedDual(训练集) | 0.840 7 | 0.823 0 |
数据集 | 算法 | 准确率 |
---|---|---|
CIFAR10 | FedAvg | 0.643 5 |
FedProx | 0.640 0 | |
FedMax | 0.639 7 | |
LG-FedAvg | 0.731 9 | |
FedALA | 0.802 8 | |
FedDual(均匀) | 0.689 9 | |
FedDual(伪标签) | 0.823 2 | |
FedDual(训练集) | 0.822 5 | |
MNIST | FedAvg | 0.979 8 |
FedProx | 0.980 1 | |
FedMax | 0.981 4 | |
LG-FedAvg | 0.983 5 | |
FedALA | 0.990 8 | |
FedDual(均匀) | 0.979 9 | |
FedDual(伪标签) | 0.989 0 | |
FedDual(训练集) | 0.989 0 | |
FashionMNIST | FedAvg | 0.843 4 |
FedProx | 0.843 0 | |
FedMax | 0.860 0 | |
LG-FedAvg | 0.858 4 | |
FedALA | 0.953 5 | |
FedDual(均匀) | 0.833 8 | |
FedDual(伪标签) | 0.882 2 | |
FedDual(训练集) | 0.925 0 |
Tab. 2 Accuracy comparison of optimization algorithms on different datasets under (0.2,50,10) condition
数据集 | 算法 | 准确率 |
---|---|---|
CIFAR10 | FedAvg | 0.643 5 |
FedProx | 0.640 0 | |
FedMax | 0.639 7 | |
LG-FedAvg | 0.731 9 | |
FedALA | 0.802 8 | |
FedDual(均匀) | 0.689 9 | |
FedDual(伪标签) | 0.823 2 | |
FedDual(训练集) | 0.822 5 | |
MNIST | FedAvg | 0.979 8 |
FedProx | 0.980 1 | |
FedMax | 0.981 4 | |
LG-FedAvg | 0.983 5 | |
FedALA | 0.990 8 | |
FedDual(均匀) | 0.979 9 | |
FedDual(伪标签) | 0.989 0 | |
FedDual(训练集) | 0.989 0 | |
FashionMNIST | FedAvg | 0.843 4 |
FedProx | 0.843 0 | |
FedMax | 0.860 0 | |
LG-FedAvg | 0.858 4 | |
FedALA | 0.953 5 | |
FedDual(均匀) | 0.833 8 | |
FedDual(伪标签) | 0.882 2 | |
FedDual(训练集) | 0.925 0 |
算法 | 准确率 | |
---|---|---|
FedAvg | 0.668 9 | 0.643 5 |
FedDual | 0.7820 | 0.823 2 |
FedDual(新客户端) | 0.778 2 | 0.8421 |
Tab. 3 Model performance of FedDual under new clients
算法 | 准确率 | |
---|---|---|
FedAvg | 0.668 9 | 0.643 5 |
FedDual | 0.7820 | 0.823 2 |
FedDual(新客户端) | 0.778 2 | 0.8421 |
1 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
2 | 顾育豪,白跃彬. 联邦学习模型安全与隐私研究进展[J]. 软件学报, 2023, 34(6):2833-2864. |
GU Y H, BAI Y B. Survey on security and privacy of federated learning models[J]. Journal of Software, 2023, 34(6): 2833-2864. | |
3 | RIEKE N, HANCOX J, LI W, et al. The future of digital health with federated learning[J]. NPJ Digital Medicine, 2020, 3: No.119. |
4 | NGUYEN D C, PHAM Q V, PATHIRANA P N, et al. Federated learning for smart healthcare: a survey[J]. ACM Computing Surveys, 2023, 55(3): No.60. |
5 | XU J, GLICKSBERG B S, SU C, et al. Federated learning for healthcare informatics[J]. Journal of Healthcare Informatics Research, 2021, 5(1): 1-19. |
6 | HAO M, LI H, LUO X, et al. Efficient and privacy-enhanced federated learning for industrial artificial intelligence[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6532-6542. |
7 | LI Y, TAO X, ZHANG X, et al. Privacy-preserved federated learning for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8423-8434. |
8 | LIANG X, LIU Y, CHEN T, et al. Federated transfer reinforcement learning for autonomous driving[M]// RAZAVI-FAR R, WANG B, TAYLOR M E, et al. Federated and Transfer Learning. Cham: Springer, 2023: 357-371. |
9 | KAIROUZ P, McMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends® in Machine Learning, 2021, 14(1/2): 1-210. |
10 | JIANG M, WANG Z, DOU Q. HarmoFL: harmonizing local and global drifts in federated learning on heterogeneous medical images[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 1087-1095. |
11 | TAN A Z, YU H, CUI L, et al. Towards personalized federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12):9587-9603. |
12 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C/OL]// Proceedings of the 3rd Machine Learning and Systems [2023-06-26].. |
13 | CHEN W, BHARDWAJ K, MARCULESCU R. FedMAX: mitigating activation divergence for accurate and communication-efficient federated learning[C]// Proceedings of the 2020 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 12458. Cham: Springer, 2021: 348-363. |
14 | WANG J, LIU Q, LIANG H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 7611-7623. |
15 | LI X C, ZHAN D C. FedRS: federated learning with restricted Softmax for label distribution Non-IID data[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 995-1005. |
16 | DESCHÊNES D, WITTNER M, DI STEFANO A, et al. Collecting duct is a site of sodium retention in PAN nephrosis: a rationale for amiloride therapy[J]. Journal of the American Society of Nephrology, 2001, 12(3): 598-601. |
17 | 李志鹏,国雍,陈耀佛,等. 基于数据生成的类别均衡联邦学习[J]. 计算机学报, 2023, 46(3):609-625. |
LI Z P, GUO Y, CHEN Y F, et al. Class-balanced federated learning based on data generation[J]. Chinese Journal of Computers, 2023, 46(3):609-625. | |
18 | LIANG P P, LIU T, LIU Z, et al. Think locally, act globally: federated learning with local and global representations[EB/OL]. (2020-07-14) [2023-06-26].. |
19 | COLLINS L, HASSANI H, MOKHTARI A, et al. Exploiting shared representations for personalized federated learning[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 2089-2099. |
20 | LI X, JIANG M, ZHANG X, et al. FedBN: federated learning on Non-IID features via local batch normalization[EB/OL]. (2021-05-11) [2023-06-26].. |
21 | TAN Y, LONG G, LIU L, et al. FedProto: federated prototype learning across heterogeneous clients[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 8432-8440. |
22 | LI X C, ZHAN D C, SHAO Y, et al. FedPHP: federated personalization with inherited private models[C]// Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 12975. Cham: Springer, 2021: 587-602. |
23 | SHAMSIAN A, NAVON A, FETAYA E, et al. Personalized federated learning using hypernetworks[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 9489-9502. |
24 | LI H, CAI Z, WANG J, et al. FedTP: federated learning by Transformer personalization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023(Early Access):1-16. |
25 | TASHAKORI A, ZHANG W, WANG Z J, et al. SemiPFL: personalized semi-supervised federated learning framework for edge intelligence[J]. IEEE Internet of Things Journal, 2023, 10(10): 9161-9171. |
26 | ZHANG J, HUA Y, WANG H, et al. FedALA: adaptive local aggregation for personalized federated learning[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2023: 11237-11244. |
27 | 高雨佳,王鹏飞,刘亮,等. 基于注意力增强元学习网络的个性化联邦学习方法[J]. 计算机研究与发展, 2024, 61(1):196-208. |
GAO Y J, WANG P F, LIU L, et al. Personalized federated learning method based on attention-enhanced meta-learning network[J]. Journal of Computer Research and Development, 2024, 61(1):196-208. | |
28 | SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 568-576. |
29 | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 8748-8763. |
30 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
31 | XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. [2023-06-26].. |
32 | KRIZHEVSKY A. Learning multiple layers of features from tiny images[EB/OL]. (2009-04-08) [2023-06-26].. |
33 | HSU T M H, QI H, BROWN M. Measuring the effects of non-identical data distribution for federated visual classification[EB/OL]. [2023-06-26].. |
[1] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[2] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[3] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
[4] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[5] | Mengjie LAN, Jianping CAI, Lan SUN. Self-regularization optimization methods for Non-IID data in federated learning [J]. Journal of Computer Applications, 2023, 43(7): 2073-2081. |
[6] | Wanzhen CHEN, En ZHANG, Leiyong QIN, Shuangxi HONG. Privacy-preserving federated learning algorithm based on blockchain in edge computing [J]. Journal of Computer Applications, 2023, 43(7): 2209-2216. |
[7] | Chunyong YIN, Rui QU. Federated learning algorithm based on personalized differential privacy [J]. Journal of Computer Applications, 2023, 43(4): 1160-1168. |
[8] | Qian CHEN, Zheng CHAI, Zilong WANG, Jiawei CHEN. Poisoning attack detection scheme based on generative adversarial network for federated learning [J]. Journal of Computer Applications, 2023, 43(12): 3790-3798. |
[9] | ZHENG Sai, LI Tianrui, HUANG Wei. Federated learning algorithm for communication cost optimization [J]. Journal of Computer Applications, 2023, 43(1): 1-7. |
[10] | Zhenyu ZHANG, Guoping TAN, Siyuan ZHOU. Efficient wireless federated learning algorithm based on 1‑bit compressive sensing [J]. Journal of Computer Applications, 2022, 42(6): 1675-1682. |
[11] | Rui SUN, Chao LI, Wei WANG, Endong TONG, Jian WANG, Jiqiang LIU. Research progress of blockchain‑based federated learning [J]. Journal of Computer Applications, 2022, 42(11): 3413-3420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||