Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3719-3726.DOI: 10.11772/j.issn.1001-9081.2022121875
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Jianhua ZHONG1, Chuangyi QIU1,2, Jianshu CHAO2, Ruicheng MING2, Jianfeng ZHONG1()
Received:
2022-12-26
Revised:
2023-02-23
Accepted:
2023-02-28
Online:
2023-03-13
Published:
2023-12-10
Contact:
Jianfeng ZHONG
About author:
ZHONG Jianhua, born in 1985, Ph. D., associate professor. His research interests include image processing, pattern recognition.Supported by:
钟建华1, 邱创一1,2, 巢建树2, 明瑞成2, 钟剑锋1()
通讯作者:
钟剑锋
作者简介:
钟建华(1985—),男,福建龙岩人,副教授,博士,主要研究方向:图像处理、模式识别基金资助:
CLC Number:
Jianhua ZHONG, Chuangyi QIU, Jianshu CHAO, Ruicheng MING, Jianfeng ZHONG. Cloth-changing person re-identification model based on semantic-guided self-attention network[J]. Journal of Computer Applications, 2023, 43(12): 3719-3726.
钟建华, 邱创一, 巢建树, 明瑞成, 钟剑锋. 基于语义引导自注意力网络的换衣行人重识别模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3719-3726.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121875
模型 | Rank-1 | Rank-5 | Rank-10 | mAP |
---|---|---|---|---|
Baseline | 51.8 | 58.0 | 61.2 | 51.7 |
SGN | 58.5 | 67.2 | 71.6 | 58.8 |
SGN+GFR | 60.0 | 68.2 | 71.9 | 58.9 |
SGN+GFR+LFRR | 61.0 | 69.2 | 72.8 | 59.5 |
SGN+GFR+LFRR+FPL | 63.7 | 70.6 | 73.8 | 60.4 |
Tab.1 Ablation experimental results on PRCC dataset
模型 | Rank-1 | Rank-5 | Rank-10 | mAP |
---|---|---|---|---|
Baseline | 51.8 | 58.0 | 61.2 | 51.7 |
SGN | 58.5 | 67.2 | 71.6 | 58.8 |
SGN+GFR | 60.0 | 68.2 | 71.9 | 58.9 |
SGN+GFR+LFRR | 61.0 | 69.2 | 72.8 | 59.5 |
SGN+GFR+LFRR+FPL | 63.7 | 70.6 | 73.8 | 60.4 |
模块策略 | Rank-1 | Rank-5 | Rank-10 | mAP |
---|---|---|---|---|
特征平均分块 | 62.9 | 70.3 | 73.8 | 60.4 |
特征重组重建 | 63.7 | 70.6 | 73.8 | 60.4 |
Tab. 2 Performance comparison of feature averagely chunking and feature reorganization and reconstruction modules on PRCC dataset
模块策略 | Rank-1 | Rank-5 | Rank-10 | mAP |
---|---|---|---|---|
特征平均分块 | 62.9 | 70.3 | 73.8 | 60.4 |
特征重组重建 | 63.7 | 70.6 | 73.8 | 60.4 |
损失函数策略 | Rank-1 | Rank-5 | Rank-10 | mAP |
---|---|---|---|---|
No FPL | 61.0 | 69.2 | 72.8 | 59.5 |
FPL-LG | 61.8 | 69.8 | 73.7 | 59.7 |
FPL-TG | 63.3 | 70.5 | 73.3 | 59.6 |
FPL | 63.7 | 70.6 | 73.8 | 60.4 |
Tab.3 Performance comparison of different FPL function strategies on PRCC dataset
损失函数策略 | Rank-1 | Rank-5 | Rank-10 | mAP |
---|---|---|---|---|
No FPL | 61.0 | 69.2 | 72.8 | 59.5 |
FPL-LG | 61.8 | 69.8 | 73.7 | 59.7 |
FPL-TG | 63.3 | 70.5 | 73.3 | 59.6 |
FPL | 63.7 | 70.6 | 73.8 | 60.4 |
方法 | PRCC | VC-Clothes | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
HACNN[ | 21.8 | — | — | — |
PCB[ | 41.8 | 38.7 | 62.0 | 62.2 |
TransReID[ | 51.8 | 51.7 | 84.5 | 76.3 |
SPT[ | 34.4 | — | — | — |
Part-aligned[ | — | — | 69.4 | 67.3 |
GI-ReID[ | 33.3 | — | 64.5 | 57.8 |
3DSL[ | 51.3 | — | 79.9 | 81.2 |
FSAM[ | 54.5 | — | 78.6 | 78.9 |
CAL[ | 55.2 | 55.8 | 81.4 | 81.7 |
SGSNet | 63.7 | 60.4 | 88.9 | 82.6 |
Tab.4 Performance comparison of different methods on PRCC and VC-Clothes datasets
方法 | PRCC | VC-Clothes | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
HACNN[ | 21.8 | — | — | — |
PCB[ | 41.8 | 38.7 | 62.0 | 62.2 |
TransReID[ | 51.8 | 51.7 | 84.5 | 76.3 |
SPT[ | 34.4 | — | — | — |
Part-aligned[ | — | — | 69.4 | 67.3 |
GI-ReID[ | 33.3 | — | 64.5 | 57.8 |
3DSL[ | 51.3 | — | 79.9 | 81.2 |
FSAM[ | 54.5 | — | 78.6 | 78.9 |
CAL[ | 55.2 | 55.8 | 81.4 | 81.7 |
SGSNet | 63.7 | 60.4 | 88.9 | 82.6 |
方法 | Celeb-reID | Celeb-reID-light | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
HACNN[ | 47.6 | 9.5 | 16.2 | 11.5 |
PCB[ | 37.1 | 8.2 | — | — |
MGN[ | 49.0 | 10.8 | 21.5 | 13.9 |
ReIDCaps[ | 51.2 | 9.8 | 20.6 | 10.2 |
JLCN[ | 51.6 | 10.8 | 21.5 | 11.1 |
SGSNet | 53.0 | 11.0 | 25.8 | 16.1 |
Tab.5 Performance comparison of different methods on Celeb-reID and Celeb-reID-light datasets
方法 | Celeb-reID | Celeb-reID-light | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
HACNN[ | 47.6 | 9.5 | 16.2 | 11.5 |
PCB[ | 37.1 | 8.2 | — | — |
MGN[ | 49.0 | 10.8 | 21.5 | 13.9 |
ReIDCaps[ | 51.2 | 9.8 | 20.6 | 10.2 |
JLCN[ | 51.6 | 10.8 | 21.5 | 11.1 |
SGSNet | 53.0 | 11.0 | 25.8 | 16.1 |
1 | 罗浩,姜伟,范星,等.基于深度学习的行人重识别研究进展 [J]. 自动化学报, 2019, 45(11): 2032-2049. 10.16383/j.aas.c180154 |
LUO H, JIANG W, FAN X, et al. A survey on deep learning based on person re-identification [J]. Acta Automatica Sinica, 2019, 45(11): 2032-2049. 10.16383/j.aas.c180154 | |
2 | YANG Q, WU A, ZHENG W-S. Person re-identification by contour sketch under moderate clothing change [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2029-2046. 10.1109/tpami.2019.2960509 |
3 | LUO H, JIANG W, GU Y, et al. A strong baseline and batch normalization neck for deep person re-identification [J]. IEEE Transactions on Multimedia, 2019, 22(10): 2597-2609. 10.1109/tmm.2019.2958756 |
4 | ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation [C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 13001-13008. 10.1609/aaai.v34i07.7000 |
5 | SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline) [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 501-518. 10.1007/978-3-030-01225-0_30 |
6 | WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification [C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282. 10.1145/3240508.3240552 |
7 | 龚云鹏,曾智勇,叶锋. 基于灰度域特征增强的行人重识别方法 [J]. 计算机应用, 2021, 41(12): 3590-3595. 10.11772/j.issn.1001-9081.2021061011 |
GONG Y P, ZENG Z Y, YE F. Person re-identification method based on grayscale feature enhancement [J]. Journal of Computer Applications, 2021, 41(12): 3590-3595. 10.11772/j.issn.1001-9081.2021061011 | |
8 | 刘乾,王洪元,曹亮,等.基于联合损失胶囊网络的换衣行人重识别 [J]. 计算机应用, 2021, 41(12): 3596-3601. |
LIU Q, WANG H Y, CAO L, et al. Cloth-changing person re-identification based on joint loss capsule network [J]. Journal of Computer Applications, 2021, 41(12): 3596-3601. | |
9 | HUANG Y, XU J, WU Q, et al. Beyond scalar neuron: adopting vector-neuron capsules for long-term person re-identification [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(10): 3459-3471. 10.1109/tcsvt.2019.2948093 |
10 | SUN Y, CHENG C, ZHANG Y, et al. Circle loss: a unified perspective of pair similarity optimization [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. 10.1109/cvpr42600.2020.00643 |
11 | JIN X, HE T, ZHENG K, et al. Cloth-changing person re-identification from a single image with gait prediction and regularization [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14258-14267. 10.1109/cvpr52688.2022.01388 |
12 | CHEN J, JIANG X, WANG F, et al. Learning 3D shape feature for texture-insensitive person re-identification [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8142-8151. 10.1109/cvpr46437.2021.00805 |
13 | HONG P, WU T, WU A, et al. Fine-grained shape-appearance mutual learning for cloth-changing person re-identification [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10508-10517. 10.1109/cvpr46437.2021.01037 |
14 | GU X, CHANG H, MA B, et al. Clothes-changing person re-identification with RGB modality only [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1050-1059. 10.1109/cvpr52688.2022.00113 |
15 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. (2021-06-03) [2022-12-13]. . |
16 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2022-12-13]. . |
17 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
18 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
19 | SUN Y, ZHENG L, DENG W, et al. SVDNet for pedestrian retrieval [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3820-3828. 10.1109/iccv.2017.410 |
20 | LAWEN H, BEN-COHEN A, PROTTER M, et al. Compact network training for person ReID [C]// Proceedings of the 2020 International Conference on Multimedia Retrieval. New York: ACM, 2020: 164-171. 10.1145/3372278.3390686 |
21 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 |
22 | HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification [EB/OL]. (2018-03-24) [2022-12-13]. . 10.21203/rs.3.rs-1501673/v1 |
23 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015: 448-456. |
24 | WAN F, WU Y, QIAN X, et al. When person re-identification meets changing clothes [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3620-3628. 10.1109/cvprw50498.2020.00423 |
25 | GONG K, LIANG X, ZHANG D, et al. Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing [C]// Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6757-6765. 10.1109/cvpr.2017.715 |
26 | LI P, XU Y, WEI Y, et al. Self-correction for human parsing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(6): 3260-3271. |
27 | LI W, ZHU X, GONG S. Harmonious attention network for person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2285-2294. 10.1109/cvpr.2018.00243 |
28 | HE S, LUO H, WANG P, et al. TransReID: Transformer-based object re-identification [C]// Proceedings of the 2021 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2021: 14993-15002. 10.1109/iccv48922.2021.01474 |
29 | WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification [C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282. 10.1145/3240508.3240552 |
[1] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[2] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[3] | Pengfei ZHANG, Litao HAN, Hengjian FENG, Hongmei LI. Point cloud semantic segmentation based on attention mechanism and global feature optimization [J]. Journal of Computer Applications, 2024, 44(4): 1086-1092. |
[4] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[5] | Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU. Remote sensing image segmentation network based on fuzzy multiscale features [J]. Journal of Computer Applications, 2024, 44(11): 3581-3586. |
[6] | Yongjiang LIU, Bin CHEN. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank [J]. Journal of Computer Applications, 2024, 44(11): 3587-3594. |
[7] | Qiumei ZHENG, Weiwei NIU, Fenghua WANG, Dan ZHAO. Dual-branch real-time semantic segmentation network based on detail enhancement [J]. Journal of Computer Applications, 2024, 44(10): 3058-3066. |
[8] | Di ZHOU, Zili ZHANG, Jia CHEN, Xinrong HU, Ruhan HE, Jun ZHANG. Stomach cancer image segmentation method based on EfficientNetV2 and object-contextual representation [J]. Journal of Computer Applications, 2023, 43(9): 2955-2962. |
[9] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. |
[10] | Bin LU, Jielin LIU. Semantic segmentation for 3D point clouds based on feature enhancement [J]. Journal of Computer Applications, 2023, 43(6): 1818-1825. |
[11] | Quan YUAN, Yunpeng XU, Chengliang TANG. Document-level relation extraction method based on path labels [J]. Journal of Computer Applications, 2023, 43(4): 1029-1035. |
[12] | Xuedong HE, Shibin XUAN, Kuan WANG, Mengnan CHEN. DeepLabV3+ image segmentation algorithm fusing cumulative distribution function and channel attention mechanism [J]. Journal of Computer Applications, 2023, 43(3): 936-942. |
[13] | Feiyu LIAN, Liang ZHANG, Jiedong WANG, Yukang JIN, Yu CHAI. Outdoor scene point cloud segmentation model based on graph model and attention mechanism [J]. Journal of Computer Applications, 2023, 43(12): 3911-3917. |
[14] | Wen HAO, Yang WANG, Hainan WEI. Semantic segmentation of point cloud scenes based on multi-feature fusion [J]. Journal of Computer Applications, 2023, 43(10): 3202-3208. |
[15] | Zixing YU, Shaojun QU, Xin HE, Zhuo WANG. High-low dimensional feature guided real-time semantic segmentation network [J]. Journal of Computer Applications, 2023, 43(10): 3077-3085. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||