Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3162-3169.DOI: 10.11772/j.issn.1001-9081.2022091418
• Advanced computing • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Pengxin TIAN1, Guannan SI1( ), Zhaoliang AN1, Jianxin LI1, Fengyu ZHOU2
), Zhaoliang AN1, Jianxin LI1, Fengyu ZHOU2
												  
						
						
						
					
				
Received:2022-09-22
															
							
																	Revised:2023-01-05
															
							
																	Accepted:2023-01-06
															
							
							
																	Online:2023-03-16
															
							
																	Published:2023-10-10
															
							
						Contact:
								Guannan SI   
													About author:TIAN Pengxin, born in 1999, M.S. candidate. His research interests include big data, edge computing.Supported by:
        
                   
            田鹏新1, 司冠南1( ), 安兆亮1, 李建辛1, 周风余2
), 安兆亮1, 李建辛1, 周风余2
                  
        
        
        
        
    
通讯作者:
					司冠南
							作者简介:田鹏新(1999—),男,山东济宁人,硕士研究生,主要研究方向:大数据、边缘计算基金资助:CLC Number:
Pengxin TIAN, Guannan SI, Zhaoliang AN, Jianxin LI, Fengyu ZHOU. Survey of data-driven intelligent cloud-edge collaboration[J]. Journal of Computer Applications, 2023, 43(10): 3162-3169.
田鹏新, 司冠南, 安兆亮, 李建辛, 周风余. 基于数据驱动的云边智能协同综述[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3162-3169.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091418
| 1 | CHEN Z, DI Y, YUAN H, et al. Intelligent cloud training system based on edge computing and cloud computing[C]// Proceedings of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2020: 1550-1553. 10.1109/itnec48623.2020.9084987 | 
| 2 | OLMOS J J V, CUGINI F, BUINING F, et al. Big data processing and artificial intelligence at the network edge[C]// Proceedings of the 22nd International Conference on Transparent Optical Networks. Piscataway: IEEE, 2020: 1-4. 10.1109/icton51198.2020.9203141 | 
| 3 | ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762. 10.1109/jproc.2019.2918951 | 
| 4 | QING L. A 5G PaaS collaborative management and control platform technology based on cloud edge collaboration based on particle swarm optimization algorithm[C]// Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers. Piscataway: IEEE, 2021: 144-147. 10.1109/ipec51340.2021.9421164 | 
| 5 | ZHANG H, CHEN S, ZOU P, et al. Research and application of industrial equipment management service system based on cloud-edge collaboration[C]// Proceedings of the 2019 Chinese Automation Congress. Piscataway: IEEE, 2019: 5451-5456. 10.1109/cac48633.2019.8996876 | 
| 6 | PALLIS G, VAKALI A. Insight and perspectives for content delivery networks[J]. Communications of the ACM, 2006, 49(1):101-106. 10.1145/1107458.1107462 | 
| 7 | SATYANARAYANAN M, BAHL P, CACERES R, et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8(4): 14-23. 10.1109/mprv.2009.82 | 
| 8 | LaMOTHE R. Edge computing[EB/OL]. [2022-07-11].. | 
| 9 | HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing - a key technology towards 5G: ETSI White Paper No.11[R/OL]. [2022-07-11].. | 
| 10 | 孔令娜,郭会明,焦函. 一种面向数据采集任务的云边协同计算框架[J]. 数字技术与应用, 2021, 39(2):165-167. 10.19695/j.cnki.cn12-1369.2021.02.53 | 
| KONG L N, GUO H M, JIAO H. A cloud-edge collaboration framework for data collection[J]. Digital Technology and Application, 2021, 39(2):165-167. 10.19695/j.cnki.cn12-1369.2021.02.53 | |
| 11 | LUO Y, ZHU X, LONG J. Data collection through mobile vehicles in edge network of smart city[J]. IEEE Access, 2019, 7:168467-168483. 10.1109/access.2019.2951587 | 
| 12 | JIAO Z, DING H, DANG M, et al. Predictive big data collection in vehicular networks: a software defined networking based approach[C]// Proceedings of the 2016 IEEE Global Communications Conference. Piscataway: IEEE, 2016: 1-6. 10.1109/glocom.2016.7842165 | 
| 13 | CAO L, YUE Y, ZHANG Y. A data collection strategy for heterogeneous wireless sensor networks based on energy efficiency and collaborative optimization[J]. Computational Intelligence and Neuroscience, 2021, 2021: No.9808449. 10.1155/2021/9808449 | 
| 14 | ROOPALI, KUMAR R. Energy efficient dynamic cluster head and routing path selection strategy for WBANs[J]. Wireless Personal Communications, 2020, 113(1):33-58. 10.1007/s11277-020-07177-6 | 
| 15 | WAJGI D, THAKUR N V. Load balancing based approach to improve lifetime of wireless sensor network[J]. International Journal of Wireless and Mobile Networks, 2012, 4(4): 155-167. 10.5121/ijwmn.2012.4411 | 
| 16 | GATTANI V S, JAFRI S M H. Data collection using score based load balancing algorithm in wireless sensor networks[C]// Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering. Piscataway: IEEE, 2016: 1-3. 10.1109/icctide.2016.7725323 | 
| 17 | SHARMA S K, WANG X. Live data analytics with collaborative edge and cloud processing in wireless IoT networks[J]. IEEE Access, 2017, 5: 4621-4635. 10.1109/access.2017.2682640 | 
| 18 | FAN C, LU Y, LENG X, et al. Data classification processing method for the Power IoT based on cloud-side collaborative architecture[C]// Proceedings of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference. Piscataway: IEEE, 2020: 684-687. 10.1109/itaic49862.2020.9339138 | 
| 19 | LUO A, CHEN Z, YUAN J, et al. Analysis and processing of power distribution data based on edge computing[C]// Proceedings of the IEEE 6th International Conference on Computer and Communication Systems. Piscataway: IEEE, 2021: 12-16. 10.1109/icccs52626.2021.9449107 | 
| 20 | LI S, LAN T, BALASUBRAMANIAN B, et al. Pushing collaborative data deduplication to the network edge: an optimization framework and system design[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2110-2122. 10.1109/tnse.2022.3155357 | 
| 21 | APARNA R, SANJAY RAJ R, BANDOPADHYAY S, et al. BlockDrive: a deduplication framework for cloud using edge-level blockchain[C]// Proceedings of the 2021 International Conference on Communication Information and Computing Technology. Piscataway: IEEE, 2021: 1-6. 10.1109/iccict50803.2021.9510039 | 
| 22 | NGUYEN M T, RAHNAVARD N. Cluster-based energy-efficient data collection in wireless sensor networks utilizing compressive sensing[C]// Proceedings of the 2013 IEEE Military Communications Conference. Piscataway: IEEE, 2013: 1708-1713. 10.1109/milcom.2013.289 | 
| 23 | HUI H, ZHOU C, XU S, et al. A novel secure data transmission scheme in industrial internet of things[J]. China Communications, 2020, 17(1): 73-88. 10.23919/jcc.2020.01.006 | 
| 24 | ZHANG Y, WANG P, FANG L, et al. Secure transmission of compressed sampling data using edge clouds[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6641-6651. 10.1109/tii.2020.2966511 | 
| 25 | CHATTERJEE A, GUPTA U, CHINNAKOTLA M K, et al. Understanding emotions in text using deep learning and big data[J]. Computers in Human Behavior, 2019, 93:309-317. 10.1016/j.chb.2018.12.029 | 
| 26 | CHEN Z, HU J, MIN G, et al. Towards accurate prediction for high-dimensional and highly-variable cloud workloads with deep learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(4):923-934. 10.1109/tpds.2019.2953745 | 
| 27 | TAO Y, XU P, JIN H. Secure data sharing and search for cloud-edge-collaborative storage[J]. IEEE Access, 2020, 8: 15963-15972. 10.1109/access.2019.2962600 | 
| 28 | LIU J, MAO Y, ZHANG J, et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]// Proceedings of the 2016 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2016:1451-1455. 10.1109/isit.2016.7541539 | 
| 29 | XU X, LI Y, HUANG T, et al. An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks[J]. Journal of Network and Computer Applications, 2019, 133: 75-85. 10.1016/j.jnca.2019.02.008 | 
| 30 | XU F, XIE Y, SUN Y, et al. Two-stage computing offloading algorithm in cloud-edge collaborative scenarios based on game theory[J]. Computers and Electrical Engineering, 2022, 97: No.107624. 10.1016/j.compeleceng.2021.107624 | 
| 31 | LYU X, TIAN H, JIANG L, et al. Selective offloading in mobile edge computing for the green internet of things[J]. IEEE Network, 2018, 32(1): 54-60. 10.1109/mnet.2018.1700101 | 
| 32 | LI A, LI L, YI S. Computation offloading strategy for IoT using improved particle swarm algorithm in edge computing[J]. Wireless Communications and Mobile Computing, 2022, 2022: No.9319136. 10.1155/2022/9319136 | 
| 33 | NING Z, DONG P, KONG X, et al. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things[J]. IEEE Internet of Things Journal, 2019, 6(3): 4804-4814. 10.1109/jiot.2018.2868616 | 
| 34 | QIU X, LIU L, CHEN W, et al. Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8050-8062. 10.1109/tvt.2019.2924015 | 
| 35 | ALAM M G R, HASSAN M M, UDDIN M Z, et al. Autonomic computation offloading in mobile edge for IoT applications[J]. Future Generation Computer Systems, 2019, 90: 149-157. 10.1016/j.future.2018.07.050 | 
| 36 | LI C, SUN H, CHEN Y, et al. Edge cloud resource expansion and shrinkage based on workload for minimizing the cost[J]. Future Generation Computer Systems, 2019, 101: 327-340. 10.1016/j.future.2019.05.026 | 
| 37 | ZHAO T, ZHOU S, GUO X, et al. A cooperative scheduling scheme of local cloud and Internet cloud for delay-aware mobile cloud computing[C]// Proceedings of the 2015 IEEE Globecom Workshops. Piscataway: IEEE, 2015:1-6. 10.1109/glocomw.2015.7414063 | 
| 38 | ZHU Z, PENG J, GU X, et al. Fair resource allocation for system throughput maximization in mobile edge computing[J]. IEEE Access, 2018, 6: 5332-5340. 10.1109/access.2018.2790963 | 
| 39 | WANG Z, LV T, CHANG Z. Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing[J]. Computer Networks, 2022, 205: No.108732. 10.1016/j.comnet.2021.108732 | 
| 40 | ZHU T, ZHOU W, YE D, et al. Resource allocation in IoT edge computing via concurrent federated reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(2): 1414-1426. 10.1109/jiot.2021.3086910 | 
| 41 | WANG D, QIN H, SONG B, et al. Resource allocation in information-centric wireless networking with D2D-enabled MEC: a deep reinforcement learning approach[J]. IEEE Access, 2019, 7: 114935-114944. 10.1109/access.2019.2935545 | 
| 42 | WANG H, YANG X, SHI Y, et al. A proximal iteratively reweighted approach for efficient network sparsification[J]. IEEE Transactions on Computers, 2022, 71(1): 185-196. 10.1109/tc.2020.3044142 | 
| 43 | PENG H, WU J, CHEN S, et al. Collaborative channel pruning for deep networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 5113-5122. | 
| 44 | HE Y, LIU P, WANG Z, et al. Filter pruning via geometric median for deep convolutional neural networks acceleration[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4335-4344. 10.1109/cvpr.2019.00447 | 
| 45 | LI T, LI J, LIU Z, et al. Few sample knowledge distillation for efficient network compression[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14627-14635. 10.1109/cvpr42600.2020.01465 | 
| 46 | HAN S, MAO H, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[EB/OL]. (2016-02-15) [2022-05-15].. 10.1609/aaai.v35i9.16950 | 
| 47 | CHEN W, WILSON J T, TYREE S, et al. Compressing neural networks with the hashing trick[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 2285-2294. 10.1145/2939672.2939839 | 
| 48 | DETTMERS T. 8-bit approximations for parallelism in deep learning[EB/OL]. (2016-02-19) [2022-2-19].. | 
| 49 | ZHOU A, YAO A, GUO Y, et al. Incremental network quantization: Towards lossless CNNs with low-precision weights[EB/OL]. (2017-08-25) [2022-08-25].. 10.48550/arXiv.1702.03044 | 
| 50 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2022-03-11].. | 
| 51 | MENG Z, LI J, ZHAO Y, et al. Conditional teacher-student learning[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2019: 6445-6449. 10.1109/icassp.2019.8683438 | 
| 52 | MIRZADEH S I, FARAJTABAR M, LI A, et al. Improved knowledge distillation via teacher assistant[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 5191-5198. 10.1609/aaai.v34i04.5963 | 
| 53 | ZHAO Z, BARIJOUGH K M, GERSTLAUER A. DeepThings: distributed adaptive deep learning inference on resource-constrained IoT edge clusters[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(11): 2348-2359. 10.1109/tcad.2018.2858384 | 
| 54 | PARK E, KIM D, KIM S, et al. Big/little deep neural network for ultra low power inference[C]// Proceedings of the 2015 International Conference on Hardware/Software Codesign and System Synthesis. Piscataway: IEEE, 2015: 124-132. 10.1109/codesisss.2015.7331375 | 
| 55 | TAYLOR B, MARCO V S, WOLFF W, et al. Adaptive deep learning model selection on embedded systems[J]. ACM SIGPLAN Notices, 2018, 53(6): 31-43. 10.1145/3299710.3211336 | 
| 56 | TEERAPITTAYANON S, McDANEL B, KUNG H T. BranchyNet: fast inference via early exiting from deep neural networks[C]// Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 2464-2469. 10.1109/icpr.2016.7900006 | 
| 57 | YAN H, YU P, LONG D. Study on deep unsupervised learning optimization algorithm based on cloud computing[C]// Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data and Smart City. Piscataway: IEEE, 2019: 679-681. 10.1109/icitbs.2019.00168 | 
| 58 | SENHAJI K, RAMCHOUN H, ETTAOUIL M. Training feedforward neural network via multiobjective optimization model using non-smooth L1/2 regularization[J]. Neurocomputing, 2020, 410: 1-11. 10.1016/j.neucom.2020.05.066 | 
| 59 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. | 
| 60 | MILLS J, HU J, MIN G. Multi-task federated learning for personalised deep neural networks in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 630-641. 10.1109/tpds.2021.3098467 | 
| 61 | REIJONEN J, OPSENICA M, MORABITO R, et al. Regression training using model parallelism in a distributed cloud[C]// Proceedings of the IEEE 17th International Conference on Dependable, Autonomic and Secure Computing/ IEEE 17th International Conference on Pervasive Intelligence and Computing/ IEEE 5th International Conference on Cloud and Big Data Computing/ IEEE 4th Cyber Science and Technology Congress. Piscataway: IEEE, 2019: 741-747. 10.1109/dasc/picom/cbdcom/cyberscitech.2019.00139 | 
| 62 | XU Z, YU F, XIONG J, et al. Helios: heterogeneity-aware federated learning with dynamically balanced collaboration[C]// Proceedings of the 58th ACM/IEEE Design Automation Conference. Piscataway: IEEE, 2021: 997-1002. 10.1109/dac18074.2021.9586241 | 
| 63 | KANG J, XIONG Z, NIVATO D, et al. Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6): 10700-10714. 10.1109/jiot.2019.2940820 | 
| 64 | PEREIRA FERREIRA A, SINNOTT R. A performance evaluation of containers running on managed kubernetes services[C]// Proceedings of the 2019 IEEE International Conference on Cloud Computing Technology and Science. Piscataway: IEEE, 2019: 199-208. 10.1109/cloudcom.2019.00038 | 
| 65 | XIONG Y, SUN Y, XING L, et al. Extend cloud to edge with kubeedge[C]// Proceedings of the 3rd ACM/IEEE Symposium on Edge Computing. Piscataway: IEEE, 2018: 373-377. 10.1109/sec.2018.00048 | 
| [1] | Fengfeng WEI, Weineng CHEN. Distributed data-driven evolutionary computation for multi-constrained optimization [J]. Journal of Computer Applications, 2024, 44(5): 1393-1400. | 
| [2] | Sheng YE, Jing WANG, Jianfeng XIN, Guiling WANG, Chenhong GUO. Dynamic evolution method for microservice composition systems in cloud-edge environment [J]. Journal of Computer Applications, 2023, 43(6): 1696-1704. | 
| [3] | Shangjing LIN, Ji MA, Bei ZHUANG, Yueying LI, Ziyi LI, Tie LI, Jin TIAN. Wireless traffic prediction based on federated learning [J]. Journal of Computer Applications, 2023, 43(6): 1900-1909. | 
| [4] | Rui MEN, Shujia FAN, Axida SHAN, Shaoyu DU, Xiumei FAN. Survey on combination of computation offloading and blockchain in internet of things [J]. Journal of Computer Applications, 2023, 43(10): 3008-3016. | 
| [5] | Yu LI, Xiping HE, Lianggui TANG. Multi-user computation offloading and resource optimization policy based on device-to-device communication [J]. Journal of Computer Applications, 2022, 42(5): 1538-1546. | 
| [6] | Kunpeng LI, Pengcheng ZHANG, Hong SHANGGUAN, Yanling WANG, Jie YANG, Zhiguo GUI. Time-frequency domain CT reconstruction algorithm based on convolutional neural network [J]. Journal of Computer Applications, 2022, 42(4): 1308-1316. | 
| [7] | GUO Mian, ZHANG Jinyou. Computation offloading policy for machine learning in mobile edge computing environments [J]. Journal of Computer Applications, 2021, 41(9): 2639-2645. | 
| [8] | WANG Yijie, FAN Jiafei, WANG Chenyu. Two-stage task offloading strategy based on game theory in cloud-edge environment [J]. Journal of Computer Applications, 2021, 41(5): 1392-1398. | 
| [9] | ZHANG Xiaowei, JIANG Dawei, CHEN Ke, CHEN Gang. AAC-Hunter: efficient algorithm for discovering aggregation algebraic constraints in relational databases [J]. Journal of Computer Applications, 2021, 41(3): 636-642. | 
| [10] | Yongpeng SHI, Junjie ZHANG, Yujie XIA, Ya GAO, Shangwei ZHANG. Computation offloading and resource allocation strategy in NOMA-based 5G ultra-dense network [J]. Journal of Computer Applications, 2021, 41(11): 3319-3324. | 
| [11] | LUO Bin, YU Bo. Computation offloading strategy based on particle swarm optimization in mobile edge computing [J]. Journal of Computer Applications, 2020, 40(8): 2293-2298. | 
| [12] | ZHU Lin, NING Qian, LEI Yinjie, CHEN Bingcai. Remaining useful life prediction for turbofan engines by genetic algorithm-based selective ensembling and temporal convolutional network [J]. Journal of Computer Applications, 2020, 40(12): 3534-3540. | 
| [13] | WEI Xiaona, LI Yinghao, WANG Zhenyu, LI Haozun, WANG Hongzhi. Methods of training data augmentation for medical image artificial intelligence aided diagnosis [J]. Journal of Computer Applications, 2019, 39(9): 2558-2567. | 
| [14] | FU Shucun, FU Zhangjie, XING Guowen, LIU Qingxiang, XU Xiaolong. Computation offloading method for workflow management in mobile edge computing [J]. Journal of Computer Applications, 2019, 39(5): 1523-1527. | 
| [15] | DENG Tianmin, FANG Fang, YUE Yunxia, YANG Qizhi. GNSS/INS global high-precision positioning method based on Elman neural network [J]. Journal of Computer Applications, 2019, 39(4): 994-1000. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||