Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1900-1909.DOI: 10.11772/j.issn.1001-9081.2022050721
Special Issue: 网络与通信
• Network and communications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                                                    Shangjing LIN1( ), Ji MA2, Bei ZHUANG1, Yueying LI1, Ziyi LI1, Tie LI1, Jin TIAN2
), Ji MA2, Bei ZHUANG1, Yueying LI1, Ziyi LI1, Tie LI1, Jin TIAN2
												  
						
						
						
					
				
Received:2022-05-20
															
							
																	Revised:2022-07-29
															
							
																	Accepted:2022-08-04
															
							
							
																	Online:2023-06-08
															
							
																	Published:2023-06-10
															
							
						Contact:
								Shangjing LIN   
													About author:MA Ji, born in 1982, Ph. D., lecturer. His research interests include deep learning, distributed algorithm, edge computing.Supported by:
        
                   
            林尚静1( ), 马冀2, 庄琲1, 李月颖1, 李子怡1, 李铁1, 田锦2
), 马冀2, 庄琲1, 李月颖1, 李子怡1, 李铁1, 田锦2
                  
        
        
        
        
    
通讯作者:
					林尚静
							作者简介:林尚静(1986—),女,湖北武汉人,讲师,博士,主要研究方向:深度学习、分布式算法、边缘计算Email:linshangjing@bupt.edu.cn基金资助:CLC Number:
Shangjing LIN, Ji MA, Bei ZHUANG, Yueying LI, Ziyi LI, Tie LI, Jin TIAN. Wireless traffic prediction based on federated learning[J]. Journal of Computer Applications, 2023, 43(6): 1900-1909.
林尚静, 马冀, 庄琲, 李月颖, 李子怡, 李铁, 田锦. 基于联邦学习的无线通信流量预测[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1900-1909.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050721
| 模型 | 优缺点 | 
|---|---|
| 本文模型 | 云边协同的城市流量预测框架能够以较低的复杂度、较高的实时性实现城市全域流量预测; 基于合作博弈的联邦训练模型针对Non-IID的通信流量数据提出模型优化方法,有效提高通信流量预测的精确性 | 
| 自回归滑动平均模型[ | 模型简单,计算复杂度低,可以准确刻画自相似网络流量;但对于存在网络异常的长时间网络流量数据并不适用 | 
| 自回归移动平均模型[ | 模型简单,计算复杂度低;但预测精度低,仅适用于短期流量预测 | 
| PF-LSTM模型[ | 克服了传统LSTM网络收敛于局部最优的缺点;但训练流程相对复杂 | 
Tab.1 Comparison between models of existing methods and the proposed model
| 模型 | 优缺点 | 
|---|---|
| 本文模型 | 云边协同的城市流量预测框架能够以较低的复杂度、较高的实时性实现城市全域流量预测; 基于合作博弈的联邦训练模型针对Non-IID的通信流量数据提出模型优化方法,有效提高通信流量预测的精确性 | 
| 自回归滑动平均模型[ | 模型简单,计算复杂度低,可以准确刻画自相似网络流量;但对于存在网络异常的长时间网络流量数据并不适用 | 
| 自回归移动平均模型[ | 模型简单,计算复杂度低;但预测精度低,仅适用于短期流量预测 | 
| PF-LSTM模型[ | 克服了传统LSTM网络收敛于局部最优的缺点;但训练流程相对复杂 | 
| 业务类型 | 市区栅格 | 市中心栅格 | 郊区栅格 | 
|---|---|---|---|
| SMS | (1.1,1.075, 1.825) | (2.87,1.43) | (4.53,6.64,7.82, 6.68,4.9) | 
| Internet | (0.465,0.225) | (0.114,0.056) | (0.2,0.34,1.96,0.4) | 
| Voice | (0.37,0.367, 0.363) | (1.85,0.85) | (0.32,0.16) | 
Tab.2 Profit distribution of grids within alliance
| 业务类型 | 市区栅格 | 市中心栅格 | 郊区栅格 | 
|---|---|---|---|
| SMS | (1.1,1.075, 1.825) | (2.87,1.43) | (4.53,6.64,7.82, 6.68,4.9) | 
| Internet | (0.465,0.225) | (0.114,0.056) | (0.2,0.34,1.96,0.4) | 
| Voice | (0.37,0.367, 0.363) | (1.85,0.85) | (0.32,0.16) | 
| 指标 | 模型 | 市区 | 市中心 | 郊区 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | ||
| MSE | 非联邦学习 | 0.795 | 67.098 | 68.850 | 176.013 | 157.220 | 192.501 | 1.628 | 1.657 | 1.657 | 
| 集中式学习 | 2.757 | 18.158 | 9.666 | 505.772 | 811.141 | 848.464 | 3.524 | 3.255 | 19.358 | |
| 联邦学习 | 0.783 | 64.990 | 64.286 | 159.865 | 145.804 | 186.982 | 0.889 | 0.843 | 0.846 | |
| RMSE | 非联邦学习 | 0.891 | 8.191 | 8.298 | 13.267 | 12.539 | 13.874 | 1.276 | 1.287 | 1.287 | 
| 集中式学习 | 1.660 | 4.261 | 3.109 | 22.489 | 28.481 | 29.128 | 1.877 | 1.804 | 4.400 | |
| 联邦学习 | 0.885 | 8.062 | 8.018 | 12.644 | 12.075 | 13.764 | 0.943 | 0.918 | 0.920 | |
| R2 | 非联邦学习 | 0.354 | 0.622 | 0.608 | 0.607 | 0.610 | 0.596 | 0.531 | 0.523 | 0.524 | 
| 集中式学习 | 0.689 | 0.377 | 0.387 | 0.811 | 0.763 | 0.549 | 0.507 | 0.598 | 0.525 | |
| 联邦学习 | 0.399 | 0.588 | 0.589 | 0.629 | 0.638 | 0.614 | 0.493 | 0.508 | 0.512 | |
Tab.3 Comparison of prediction effect of different regions
| 指标 | 模型 | 市区 | 市中心 | 郊区 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | ||
| MSE | 非联邦学习 | 0.795 | 67.098 | 68.850 | 176.013 | 157.220 | 192.501 | 1.628 | 1.657 | 1.657 | 
| 集中式学习 | 2.757 | 18.158 | 9.666 | 505.772 | 811.141 | 848.464 | 3.524 | 3.255 | 19.358 | |
| 联邦学习 | 0.783 | 64.990 | 64.286 | 159.865 | 145.804 | 186.982 | 0.889 | 0.843 | 0.846 | |
| RMSE | 非联邦学习 | 0.891 | 8.191 | 8.298 | 13.267 | 12.539 | 13.874 | 1.276 | 1.287 | 1.287 | 
| 集中式学习 | 1.660 | 4.261 | 3.109 | 22.489 | 28.481 | 29.128 | 1.877 | 1.804 | 4.400 | |
| 联邦学习 | 0.885 | 8.062 | 8.018 | 12.644 | 12.075 | 13.764 | 0.943 | 0.918 | 0.920 | |
| R2 | 非联邦学习 | 0.354 | 0.622 | 0.608 | 0.607 | 0.610 | 0.596 | 0.531 | 0.523 | 0.524 | 
| 集中式学习 | 0.689 | 0.377 | 0.387 | 0.811 | 0.763 | 0.549 | 0.507 | 0.598 | 0.525 | |
| 联邦学习 | 0.399 | 0.588 | 0.589 | 0.629 | 0.638 | 0.614 | 0.493 | 0.508 | 0.512 | |
| 指标 | 模型 | SMS | Voice | Internet | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | ||
| MSE | 非联邦学习 | 0.795 | 176.013 | 1.628 | 0.314 | 320.364 | 0.684 | 12.122 | 130 796.234 | 238.509 | 
| 集中式学习 | 2.757 | 505.772 | 3.524 | 0.882 | 938.018 | 1.282 | 43.396 | 16 142.886 | 260.976 | |
| 联邦学习 | 0.783 | 159.865 | 0.889 | 0.302 | 270.755 | 0.678 | 2.836 | 13 201.060 | 100.583 | |
| RMSE | 非联邦学习 | 0.891 | 13.267 | 1.276 | 0.560 | 17.899 | 0.827 | 3.482 | 361.658 | 15.444 | 
| 集中式学习 | 1.660 | 22.489 | 1.877 | 0.939 | 30.627 | 1.132 | 6.588 | 127.055 | 16.155 | |
| 联邦学习 | 0.885 | 12.644 | 0.943 | 0.550 | 16.455 | 0.823 | 1.684 | 114.896 | 10.029 | |
| R2 | 非联邦学习 | 0.354 | 0.607 | 0.531 | 0.468 | 0.625 | 0.592 | 0.597 | 0.586 | 0.590 | 
| 集中式学习 | 0.689 | 0.811 | 0.507 | 0.762 | 0.699 | 0.514 | -1.674 | 0.521 | 0.635 | |
| 联邦学习 | 0.399 | 0.629 | 0.493 | 0.510 | 0.233 | 0.596 | 0.825 | 0.608 | 0.859 | |
Tab.4 Comparison of prediction effect of different business types
| 指标 | 模型 | SMS | Voice | Internet | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | ||
| MSE | 非联邦学习 | 0.795 | 176.013 | 1.628 | 0.314 | 320.364 | 0.684 | 12.122 | 130 796.234 | 238.509 | 
| 集中式学习 | 2.757 | 505.772 | 3.524 | 0.882 | 938.018 | 1.282 | 43.396 | 16 142.886 | 260.976 | |
| 联邦学习 | 0.783 | 159.865 | 0.889 | 0.302 | 270.755 | 0.678 | 2.836 | 13 201.060 | 100.583 | |
| RMSE | 非联邦学习 | 0.891 | 13.267 | 1.276 | 0.560 | 17.899 | 0.827 | 3.482 | 361.658 | 15.444 | 
| 集中式学习 | 1.660 | 22.489 | 1.877 | 0.939 | 30.627 | 1.132 | 6.588 | 127.055 | 16.155 | |
| 联邦学习 | 0.885 | 12.644 | 0.943 | 0.550 | 16.455 | 0.823 | 1.684 | 114.896 | 10.029 | |
| R2 | 非联邦学习 | 0.354 | 0.607 | 0.531 | 0.468 | 0.625 | 0.592 | 0.597 | 0.586 | 0.590 | 
| 集中式学习 | 0.689 | 0.811 | 0.507 | 0.762 | 0.699 | 0.514 | -1.674 | 0.521 | 0.635 | |
| 联邦学习 | 0.399 | 0.629 | 0.493 | 0.510 | 0.233 | 0.596 | 0.825 | 0.608 | 0.859 | |
| 1 | 刘少杰. 基于大数据的移动网络流量预测研究[D]. 北京:北方工业大学, 2021:31-41. 10.51393/j.jamst.2022015 | 
| LIU S J. Research on mobile network traffic prediction based on big data[D]. Beijing: North China University of Technology, 2021:31-41. 10.51393/j.jamst.2022015 | |
| 2 | 韩超,宋苏,王成红. 基于ARIMA模型的短时交通流实时自适应预测[J]. 系统仿真学报, 2004, 16(7):1530-1532, 1535. 10.3969/j.issn.1004-731X.2004.07.042 | 
| HAN C, SONG S, WANG C H. A real-time short-term traffic flow adaptive forecasting method based on ARIMA model [J]. Journal of System Simulation, 2004, 16(7):1530-1532, 1535. 10.3969/j.issn.1004-731X.2004.07.042 | |
| 3 | 高波,张钦宇,梁永生,等. 基于EMD及ARMA的自相似网络流量预测[J]. 通信学报, 2011, 32(4):47-56. 10.3969/j.issn.1000-436X.2011.04.007 | 
| GAO B, ZHANG Q Y, LIANG Y S, et al. Predicting self-similar networking traffic based on EMD and ARMA [J]. Journal on Communications, 2011, 32(4):47-56. 10.3969/j.issn.1000-436X.2011.04.007 | |
| 4 | 盛虎,张玉雪. 基于ARIMA的网络流量建模及预测研究[J]. 通信技术, 2019, 52(4):903-907. 10.3969/j.issn.1002-0802.2019.04.022 | 
| SHENG H, ZHANG Y X. Network traffic modeling and forecasting based on ARIMA[J]. Communications Technology, 2019, 52(4):903-907. 10.3969/j.issn.1002-0802.2019.04.022 | |
| 5 | 胡建伟. 基于LSTM的移动通信基站流量预测[J]. 信息技术与信息化, 2021(5):84-86. 10.3969/j.issn.1672-9528.2021.05.024 | 
| HU J W. Traffic prediction of mobile communication base station based on LSTM[J]. Information Technology and Informatization, 2021(5):84-86. 10.3969/j.issn.1672-9528.2021.05.024 | |
| 6 | 李校林,吴腾. 基于PF-LSTM网络的高效网络流量预测方法[J]. 计算机应用研究, 2019, 36(12):3833-3836. 10.19734/j.issn.1001-3695.2018.06.0394 | 
| LI X L, WU T. Efficient network traffic prediction method based on PF-LSTM network [J]. Application Research of Computers, 2019, 36(12):3833-3836. 10.19734/j.issn.1001-3695.2018.06.0394 | |
| 7 | TIAN Z D. Network traffic prediction method based on wavelet transform and multiple models fusion [J]. International Journal of Communication Systems, 2020, 33(11): No.e4415. 10.1002/dac.4415 | 
| 8 | 康梦轩,宋俊平,范鹏飞,等. 基于深度学习的网络流量预测研究综述[J]. 计算机工程与应用, 2021, 57(10):1-9. 10.3778/j.issn.1002-8331.2101-0402 | 
| KANG M X, SONG J P, FAN P F, et al. Survey of network traffic forecast based on deep learning[J]. Computer Engineering and Applications, 2021, 57(10):1-9. 10.3778/j.issn.1002-8331.2101-0402 | |
| 9 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2016:1273-1282. | 
| 10 | ZHU H Y, ZHANG H Y, JIN Y C. From federated learning to federated neural architecture search: a survey [J]. Complex and Intelligent Systems, 2021, 7(2):639-657. 10.1007/s40747-020-00247-z | 
| 11 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. 10.1145/3298981 | 
| 12 | MA Z Z, ZHAO M Y, CAI X J, et al. Fast-convergent federated learning with class-weighted aggregation [J]. Journal of Systems Architecture, 2021, 117: No.102125. 10.1016/j.sysarc.2021.102125 | 
| 13 | BALAKRISHNAN R, AKDENIZ M, DHAKAL S, et al. Resource management and model personalization for federated learning over wireless edge networks[J]. Journal of Sensor and Actuator Networks, 2021, 10(1): No.17. 10.3390/jsan10010017 | 
| 14 | DINH C T, TRAN N H, NGUYEN T D. Personalized federated learning with Moreau envelopes[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020:21394-21405. 10.1145/3404397.3404457 | 
| 15 | SAAD W, HAN Z, DEBBAH M, et al. Coalitional game theory for communication networks: a tutorial[J]. IEEE Signal Processing Magazine, 2009, 26(5):77-97. 10.1109/msp.2009.000000 | 
| 16 | 谢娟英,丁丽娟,王明钊. 基于谱聚类的无监督特征选择算法[J]. 软件学报, 2020, 31(4):1009-1024. 10.13328/j.cnki.jos.005927 | 
| XIE J Y, DING L J, WANG M Z. Spectral clustering based unsupervised feature selection algorithms [J]. Journal of Software, 2020, 31(4): 1009-1024. 10.13328/j.cnki.jos.005927 | |
| 17 | GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: a search space odyssey [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232. 10.1109/tnnls.2016.2582924 | 
| 18 | AUMANN R. The Shapley value [M]// ICHIISHI T, NEYMAN A, TAUMAN Y. Game Theory and Applications: A Volume in Economic Theory, Econometrics, and Mathematical Economics. Cambridge: Academic Press, 1990:158-165. 10.1016/b978-0-12-370182-4.50011-8 | 
| [1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. | 
| [2] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. | 
| [3] | Wei LUO, Jinquan LIU, Zheng ZHANG. Dual vertical federated learning framework incorporating secret sharing technology [J]. Journal of Computer Applications, 2024, 44(6): 1872-1879. | 
| [4] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. | 
| [5] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. | 
| [6] | Zucuan ZHANG, Xuebin CHEN, Rui GAO, Yuanhuai ZOU. Federated learning client selection method based on label classification [J]. Journal of Computer Applications, 2024, 44(12): 3759-3765. | 
| [7] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. | 
| [8] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. | 
| [9] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. | 
| [10] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. | 
| [11] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. | 
| [12] | Mengjie LAN, Jianping CAI, Lan SUN. Self-regularization optimization methods for Non-IID data in federated learning [J]. Journal of Computer Applications, 2023, 43(7): 2073-2081. | 
| [13] | Wanzhen CHEN, En ZHANG, Leiyong QIN, Shuangxi HONG. Privacy-preserving federated learning algorithm based on blockchain in edge computing [J]. Journal of Computer Applications, 2023, 43(7): 2209-2216. | 
| [14] | Sheng YE, Jing WANG, Jianfeng XIN, Guiling WANG, Chenhong GUO. Dynamic evolution method for microservice composition systems in cloud-edge environment [J]. Journal of Computer Applications, 2023, 43(6): 1696-1704. | 
| [15] | Shaochen HAO, Zizuan WEI, Yao MA, Dan YU, Yongle CHEN. Network intrusion detection model based on efficient federated learning algorithm [J]. Journal of Computer Applications, 2023, 43(4): 1169-1175. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||