Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3647-3653.DOI: 10.11772/j.issn.1001-9081.2022121881
Special Issue: 人工智能
• Artificial intelligence • Next Articles
Yu ZHANG, Ying CAI(), Jianyang CUI, Meng ZHANG, Yanfang FAN
Received:
2022-12-26
Revised:
2023-03-19
Accepted:
2023-03-24
Online:
2023-04-12
Published:
2023-12-10
Contact:
Ying CAI
About author:
ZHANG Yu, born in 1997, M. S. candidate. Her research interests include deep learning, differential privacy.Supported by:
通讯作者:
蔡英
作者简介:
张宇(1997—),女,河北石家庄人,硕士研究生,主要研究方向:深度学习、差分隐私基金资助:
CLC Number:
Yu ZHANG, Ying CAI, Jianyang CUI, Meng ZHANG, Yanfang FAN. Gradient descent with momentum algorithm based on differential privacy in convolutional neural network[J]. Journal of Computer Applications, 2023, 43(12): 3647-3653.
张宇, 蔡英, 崔剑阳, 张猛, 范艳芳. 卷积神经网络中基于差分隐私的动量梯度下降算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3647-3653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121881
参数名 | 不同实验数据集下的参数值 | ||
---|---|---|---|
MNIST | Fashion-MNIST | CIFAR-10 | |
批处理数据的样本数N | 250 | 256 | 1 500 |
模型训练轮次 | 100 | 100 | 300 |
学习率初始值 | 0.04 | 0.04 | 0.20 |
噪声尺度初始值 | 2 | 2 | 15 |
噪声尺度最小值 | 0.18 | 0.16 | 0.10 |
动量超参数m | 0.9 | 0.9 | 0.9 |
Tab. 1 Experimental parameters
参数名 | 不同实验数据集下的参数值 | ||
---|---|---|---|
MNIST | Fashion-MNIST | CIFAR-10 | |
批处理数据的样本数N | 250 | 256 | 1 500 |
模型训练轮次 | 100 | 100 | 300 |
学习率初始值 | 0.04 | 0.04 | 0.20 |
噪声尺度初始值 | 2 | 2 | 15 |
噪声尺度最小值 | 0.18 | 0.16 | 0.10 |
动量超参数m | 0.9 | 0.9 | 0.9 |
算法 | 准确率 | 损失的准确率 |
---|---|---|
NO-PRIVACY | 89.82 | 0.00 |
DPGDM | 85.55 | 4.27 |
DP-SGD | 78.80 | 11.02 |
DP-PSO | 81.40 | 8.42 |
Tab.2 Accuracy comparison of different algorithms on Fashion-MNIST dataset
算法 | 准确率 | 损失的准确率 |
---|---|---|
NO-PRIVACY | 89.82 | 0.00 |
DPGDM | 85.55 | 4.27 |
DP-SGD | 78.80 | 11.02 |
DP-PSO | 81.40 | 8.42 |
算法 | 准确率 | 损失的准确率 |
---|---|---|
NO-PRIVACY | 70.12 | 0.00 |
DPGDM | 68.72 | 1.40 |
DP-SGD | 64.59 | 5.53 |
DP-SGD with Tempered Sigmoid[ | 66.20 | 3.92 |
Tab. 3 Accuracy comparison of different algorithms on CIFAR-10 dataset
算法 | 准确率 | 损失的准确率 |
---|---|---|
NO-PRIVACY | 70.12 | 0.00 |
DPGDM | 68.72 | 1.40 |
DP-SGD | 64.59 | 5.53 |
DP-SGD with Tempered Sigmoid[ | 66.20 | 3.92 |
1 | ALZUBAIDI L, ZHANG J, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of Big Data, 2021, 8: Article No. 53. 10.1186/s40537-021-00444-8 |
2 | SUN Y, XUE B, ZHANG M, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3840-3854. 10.1109/tcyb.2020.2983860 |
3 | 季长清,高志勇,秦静,等.基于卷积神经网络的图像分类算法综述[J].计算机应用,2022,42(4):1044-1049. 10.11772/j.issn.1001-9081.2021071273 |
JI C Q, GAO Z Y, QIN J, et al. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022,42(4):1044-1049. 10.11772/j.issn.1001-9081.2021071273 | |
4 | HUSAIN S S, BOBER M. REMAP: multi-layer entropy-guided pooling of dense CNN features for image retrieval[J]. IEEE Transactions on Image Processing, 2019, 28(10): 5201-5213. 10.1109/tip.2019.2917234 |
5 | FREDRIKSON M, JHA S, RISTENPART T. Model inversion attacks that exploit confidence information and basic countermeasures[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2015: 1322-1333. 10.1145/2810103.2813677 |
6 | HERNANDEZ MARCANO N J, MOLLER M, HANSEN S, et al. On fully homomorphic encryption for privacy-preserving deep learning [C]// Proceedings of the 2019 IEEE Globecom Workshops. Piscataway: IEEE, 2019: 1-6. 10.1109/gcwkshps45667.2019.9024625 |
7 | A-T TRAN, T-D LUONG, KARNJANA J, et al. An efficient approach for privacy preserving decentralized deep learning models based on secure multi-party computation[J]. Neurocomputing, 2021, 422: 245-262. 10.1016/j.neucom.2020.10.014 |
8 | MEDEN B, EMERŠIČ Ž, ŠTRUC V, et al. k-Same-Net: k-anonymity with generative deep neural networks for face deidentification [J]. Entropy, 2018, 20(1): 60. 10.3390/e20010060 |
9 | DWORK C. Differential privacy[C]// Proceedings of the 33rd International Colloquium on Automata, Languages and Programming. Berlin: Springer, 2006: 1-12. 10.1007/11787006_1 |
10 | CAI Y, ZHANG Y, QU J, et al. Differential privacy preserving dynamic data release scheme based on Jensen-Shannon divergence[J]. China Communications, 2022,19(6):11-21. 10.23919/jcc.2022.06.002 |
11 | 屈晶晶,蔡英,范艳芳,等. 基于k-prototype聚类的差分隐私混合数据发布算法[J]. 计算机科学与探索, 2021, 15(1):109-118. 10.3778/j.issn.1673-9418.2003048 |
QU J J, CAI Y, FAN Y F, et al. Differentially private mixed data release algorithm based on k-prototype clustering[J]. Journal of Frontiers of Computer Science and Technology, 2021,15(1):109-118. 10.3778/j.issn.1673-9418.2003048 | |
12 | ZHANG Y, CAI Y, ZHANG M, et al. A survey on privacy-preserving deep learning with differential privacy [C]// Proceedings of the 2021 International Conference on Big Data and Security. Singapore: Springer, 2022: 18-30. 10.1007/978-981-19-0852-1_2 |
13 | SHOKRI R, SHMATIKOV V. Privacy-preserving deep learning [C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2015: 1310-1321. 10.1145/2810103.2813687 |
14 | ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. 10.1145/2976749.2978318 |
15 | YUAN D, ZHU X, WEI M, et al. Collaborative deep learning for medical image analysis with differential privacy [C]// Proceedings of the 2019 IEEE Global Communications Conference. Piscataway: IEEE, 2019: 1-6. 10.1109/globecom38437.2019.9014259 |
16 | ARACHCHIGE P C M, BERTOK P, KHALIL I, et al. Local differential privacy for deep learning [J]. IEEE Internet of Things Journal, 2019, 7(7): 5827-5842. 10.1109/jiot.2019.2952146 |
17 | GONG M, PAN K, XIE Y, et al. Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition[J]. Neural Networks, 2020, 125: 131-141. 10.1016/j.neunet.2020.02.001 |
18 | YU L, LIU L, PU C, et al. Differentially private model publishing for deep learning [C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 332-349. 10.1109/sp.2019.00019 |
19 | ZILLER A, USYNIN D, BRAREN R, et al. Medical imaging deep learning with differential privacy[J]. Scientific Reports, 2021, 11: Article No. 13524. 10.1038/s41598-021-93030-0 |
20 | PAPERNOT N, THAKURTA A, SONG S, et al. Tempered sigmoid activations for deep learning with differential privacy[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 9312-9321. 10.1609/aaai.v35i10.17123 |
21 | 李敏,李红娇,陈杰.差分隐私保护下的Adam优化算法研究[J].计算机应用与软件,2020,37(6):253-258,296. 10.3969/j.issn.1000-386x.2020.06.044 |
LI M, LI H J, CHEN J. Adam optimization algorithm based on differential privacy protection[J]. Computer Applications and Software, 2020,37(6):253-258,296. 10.3969/j.issn.1000-386x.2020.06.044 | |
22 | 余方超,方贤进,张又文,等.增强深度学习中的差分隐私防御机制[J].南京大学学报(自然科学),2021,57(1):10-20. |
YU F C, FANG X J, ZHANG Y W, et al. Enhanced differential privacy defense mechanism in deep learning[J]. Journal of Nanjing University (Natural Science), 2021,57(1):10-20. | |
23 | YAMASHITA R, NISHIO M, DO R K G, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights into Imaging, 2018, 9(4): 611-629. 10.1007/s13244-018-0639-9 |
24 | KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24-49. 10.1016/j.isprsjprs.2020.12.010 |
25 | KIRANYAZ S, AVCI O, ABDELJABER O, et al. 1D convolutional neural networks and applications: a survey[J]. Mechanical Systems and Signal Processing, 2021, 151: 107398. 10.1016/j.ymssp.2020.107398 |
26 | MIRONOV I. Rényi differential privacy[C]// Proceedings of the 2017 IEEE 30th Computer Security Foundations Symposium. Piscataway: IEEE, 2017: 263-275. 10.1109/csf.2017.11 |
27 | 谭作文,张连福.机器学习隐私保护研究综述[J].软件学报,2020,31(7):2127-2156. 10.13328/j.cnki.jos.006052 |
TAN Z W, ZHANG L F. Survey on privacy preserving techniques for machine learning [J]. Journal of Software, 2020,31(7):2127-2156. 10.13328/j.cnki.jos.006052 | |
28 | YOUSEFPOUR A, SHILOV I, SABLAYROLLES A, et al. Opacus: user-friendly differential privacy library in PyTorch [EB/OL]. [2022-08-22].. |
29 | 张攀峰,吴丹华,董明刚. 基于粒子群优化的差分隐私深度学习模型[J]. 计算机工程, 2023,49(9): 144-157. 10.19678/j.issn.1000-3428.0065590 |
ZHANG P F, WU D H, DONG M G. Differential privacy deep learning model based on particle swarm optimization [J]. Computer Engineering, 2023,49(9): 144-157. 10.19678/j.issn.1000-3428.0065590 |
[1] | Zhizheng ZHANG, Xiaojian ZHANG, Junqing WANG, Guanghui FENG. Federated spatial data publication method with differential privacy and secure aggregation [J]. Journal of Computer Applications, 2024, 44(9): 2777-2784. |
[2] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[7] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[8] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[9] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[10] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[11] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[12] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[13] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[14] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||