Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1910-1918.DOI: 10.11772/j.issn.1001-9081.2022050706
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Qiang WANG1,2, Xiaoming HUANG1,2, Qiang TONG1,2, Xiulei LIU1,2()
Received:
2022-05-18
Revised:
2023-01-04
Accepted:
2023-01-10
Online:
2023-06-08
Published:
2023-06-10
Contact:
Xiulei LIU
About author:
WANG Qiang, born in 1996, M. S. candidate. His research interests include machine learning, image recognition.Supported by:
王强1,2, 黄小明1,2, 佟强1,2, 刘秀磊1,2()
通讯作者:
刘秀磊
作者简介:
王强(1996—),男,安徽潜山人,硕士研究生,主要研究方向:机器学习、图像识别基金资助:
CLC Number:
Qiang WANG, Xiaoming HUANG, Qiang TONG, Xiulei LIU. Weakly supervised salient object detection algorithm based on bounding box annotation[J]. Journal of Computer Applications, 2023, 43(6): 1910-1918.
王强, 黄小明, 佟强, 刘秀磊. 基于边界框标注的弱监督显著性目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1910-1918.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050706
算法 | 监督方式 | ECSSD | DUTS-TE | HKU-IS | DUT-OMRON | ||||
---|---|---|---|---|---|---|---|---|---|
Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | ||
MR[ | 无监督 | 0.690 | 0.186 | 0.510 | 0.189 | 0.655 | 0.174 | 0.577 | 0.194 |
DSR[ | 无监督 | 0.676 | 0.179 | 0.506 | 0.163 | 0.677 | 0.149 | 0.536 | 0.145 |
HS[ | 无监督 | 0.627 | 0.229 | 0.460 | 0.258 | 0.623 | 0.223 | 0.507 | 0.237 |
BSCA[ | 无监督 | 0.707 | 0.185 | 0.500 | 0.197 | 0.654 | 0.175 | 0.509 | 0.190 |
MB+[ | 无监督 | 0.697 | 0.174 | 0.528 | 0.179 | 0.678 | 0.151 | 0.531 | 0.167 |
MST[ | 无监督 | 0.693 | 0.151 | 0.540 | 0.156 | 0.680 | 0.131 | 0.542 | 0.149 |
ASMO[ | 弱监督(类别标注) | 0.810 | 0.114 | 0.625 | 0.123 | 0.821 | 0.091 | 0.633 | 0.100 |
WSS[ | 弱监督(类别标注) | 0.828 | 0.105 | 0.657 | 0.106 | 0.821 | 0.081 | 0.611 | 0.111 |
MSW[ | 弱监督(类别+标题标注) | 0.846 | 0.096 | 0.704 | 0.097 | 0.823 | 0.086 | 0.619 | 0.109 |
SBB[ | 弱监督(边界框标注) | 0.878 | 0.072 | 0.775 | 0.073 | 0.869 | 0.057 | 0.751 | 0.075 |
本文算法 | 弱监督(边界框标注) | 0.894 | 0.062 | 0.806 | 0.062 | 0.880 | 0.052 | 0.791 | 0.065 |
Tab. 1 Quantitative comparison of the proposed algorithm and other algorithms
算法 | 监督方式 | ECSSD | DUTS-TE | HKU-IS | DUT-OMRON | ||||
---|---|---|---|---|---|---|---|---|---|
Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | ||
MR[ | 无监督 | 0.690 | 0.186 | 0.510 | 0.189 | 0.655 | 0.174 | 0.577 | 0.194 |
DSR[ | 无监督 | 0.676 | 0.179 | 0.506 | 0.163 | 0.677 | 0.149 | 0.536 | 0.145 |
HS[ | 无监督 | 0.627 | 0.229 | 0.460 | 0.258 | 0.623 | 0.223 | 0.507 | 0.237 |
BSCA[ | 无监督 | 0.707 | 0.185 | 0.500 | 0.197 | 0.654 | 0.175 | 0.509 | 0.190 |
MB+[ | 无监督 | 0.697 | 0.174 | 0.528 | 0.179 | 0.678 | 0.151 | 0.531 | 0.167 |
MST[ | 无监督 | 0.693 | 0.151 | 0.540 | 0.156 | 0.680 | 0.131 | 0.542 | 0.149 |
ASMO[ | 弱监督(类别标注) | 0.810 | 0.114 | 0.625 | 0.123 | 0.821 | 0.091 | 0.633 | 0.100 |
WSS[ | 弱监督(类别标注) | 0.828 | 0.105 | 0.657 | 0.106 | 0.821 | 0.081 | 0.611 | 0.111 |
MSW[ | 弱监督(类别+标题标注) | 0.846 | 0.096 | 0.704 | 0.097 | 0.823 | 0.086 | 0.619 | 0.109 |
SBB[ | 弱监督(边界框标注) | 0.878 | 0.072 | 0.775 | 0.073 | 0.869 | 0.057 | 0.751 | 0.075 |
本文算法 | 弱监督(边界框标注) | 0.894 | 0.062 | 0.806 | 0.062 | 0.880 | 0.052 | 0.791 | 0.065 |
方法 | ECSSD | DUTS-TE | HKU-IS | DUT-OMRON | ||||
---|---|---|---|---|---|---|---|---|
Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | |
GrabCut生成的初始显著图 | 0.892 7 | 0.056 4 | 0.814 0 | 0.058 7 | 0.855 7 | 0.061 4 | 0.870 5 | 0.040 5 |
GrabCut +四周调整的显著图 | 0.893 5 | 0.054 6 | 0.817 0 | 0.057 4 | 0.857 0 | 0.059 9 | 0.871 7 | 0.039 7 |
GrabCut +四周中部调整的显著图 | 0.894 1 | 0.054 4 | 0.817 2 | 0.057 4 | 0.856 9 | 0.060 0 | 0.872 0 | 0.039 6 |
GrabCut +全部后处理的显著图 | 0.894 3 | 0.054 2 | 0.817 5 | 0.057 3 | 0.857 1 | 0.059 9 | 0.872 2 | 0.039 5 |
Tab. 2 Quantitative comparison of results in saliency map generation process of the proposed algorithm
方法 | ECSSD | DUTS-TE | HKU-IS | DUT-OMRON | ||||
---|---|---|---|---|---|---|---|---|
Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | |
GrabCut生成的初始显著图 | 0.892 7 | 0.056 4 | 0.814 0 | 0.058 7 | 0.855 7 | 0.061 4 | 0.870 5 | 0.040 5 |
GrabCut +四周调整的显著图 | 0.893 5 | 0.054 6 | 0.817 0 | 0.057 4 | 0.857 0 | 0.059 9 | 0.871 7 | 0.039 7 |
GrabCut +四周中部调整的显著图 | 0.894 1 | 0.054 4 | 0.817 2 | 0.057 4 | 0.856 9 | 0.060 0 | 0.872 0 | 0.039 6 |
GrabCut +全部后处理的显著图 | 0.894 3 | 0.054 2 | 0.817 5 | 0.057 3 | 0.857 1 | 0.059 9 | 0.872 2 | 0.039 5 |
方法 | ECSSD | DUTS-TE | HKU-IS | DUT-OMRON | ||||
---|---|---|---|---|---|---|---|---|
Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | |
GrabCut生成的初始显著图 | 0.886 5 | 0.068 9 | 0.803 9 | 0.064 3 | 0.874 9 | 0.054 7 | 0.781 7 | 0.067 2 |
GrabCut +四周调整的显著图 | 0.890 6 | 0.064 5 | 0.804 0 | 0.063 2 | 0.876 0 | 0.053 7 | 0.793 2 | 0.064 3 |
GrabCut +四周、中部调整的显著图 | 0.893 8 | 0.063 2 | 0.807 4 | 0.062 9 | 0.875 4 | 0.053 6 | 0.794 2 | 0.064 6 |
GrabCut +全部后处理的显著图 | 0.893 6 | 0.062 1 | 0.805 7 | 0.061 9 | 0.879 6 | 0.052 0 | 0.791 2 | 0.065 1 |
Tab. 3 Quantitative comparison of performance of PoolNet trained models with input of different saliency map post-processing results as pseudo ground-truth
方法 | ECSSD | DUTS-TE | HKU-IS | DUT-OMRON | ||||
---|---|---|---|---|---|---|---|---|
Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | Max-F↑ | MAE↓ | |
GrabCut生成的初始显著图 | 0.886 5 | 0.068 9 | 0.803 9 | 0.064 3 | 0.874 9 | 0.054 7 | 0.781 7 | 0.067 2 |
GrabCut +四周调整的显著图 | 0.890 6 | 0.064 5 | 0.804 0 | 0.063 2 | 0.876 0 | 0.053 7 | 0.793 2 | 0.064 3 |
GrabCut +四周、中部调整的显著图 | 0.893 8 | 0.063 2 | 0.807 4 | 0.062 9 | 0.875 4 | 0.053 6 | 0.794 2 | 0.064 6 |
GrabCut +全部后处理的显著图 | 0.893 6 | 0.062 1 | 0.805 7 | 0.061 9 | 0.879 6 | 0.052 0 | 0.791 2 | 0.065 1 |
1 | 张文达,许悦雷,倪嘉成,等. 基于多尺度分块卷积神经网络的图像目标识别算法[J]. 计算机应用, 2016, 36(4): 1033-1038. 10.11772/j.issn.1001-9081.2016.04.1033 |
ZHANG W D, XU Y L, NI J C, et al. Image target recognition method based on multi-scale block convolutional neural network[J]. Journal of Computer Applications, 2016, 36(4): 1033-1038. 10.11772/j.issn.1001-9081.2016.04.1033 | |
2 | YANG X Y, QIAN X M, XUE Y. Scalable mobile image retrieval by exploring contextual saliency [J]. IEEE Transactions on Image Processing, 2015, 24(6): 1709-1721. 10.1109/tip.2015.2411433 |
3 | SU Y Y, ZHAO Q J, ZHAO L J, et al. Abrupt motion tracking using a visual saliency embedded particle filter[J]. Pattern Recognition, 2014, 47(5): 1826-1834. 10.1016/j.patcog.2013.11.028 |
4 | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1597-1604. 10.1109/cvpr.2009.5206596 |
5 | GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926. 10.1109/tpami.2011.272 |
6 | ZHANG J M, SCLAROFF S, LIN Z, et al. Minimum barrier salient object detection at 80 FPS[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1404-1412. 10.1109/iccv.2015.165 |
7 | ACHANTA R, ESTRADA F, WILS P, et al. Salient region detection and segmentation[C]// Proceedings of the 2008 International Conference on Computer Vision Systems, LNCS 5008. Berlin: Springer, 2008: 66-75. |
8 | VALENTI R, SEBE N, GEVERS T. Image saliency by isocentric curvedness and color[C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 2185-2192. 10.1109/iccv.2009.5459240 |
9 | ZHANG J, ZHANG T, DAI Y C, et al. Deep unsupervised saliency detection: a multiple noisy labeling perspective[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9029-9038. 10.1109/cvpr.2018.00941 |
10 | CHENG M M, MITRA N J, HUANG X L, et al. Global contrast based salient region detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582. 10.1109/tpami.2014.2345401 |
11 | 李小雨,房体育,夏英杰,等. 基于图割精细化和可微分聚类的无监督显著性目标检测[J]. 计算机应用, 2021, 41(12): 3571-3577. 10.11772/j.issn.1001-9081.2021061054 |
LI X Y, FANG T Y, XIA Y J, et al. Unsupervised salient object detection based on graph cut refinement and differentiable clustering [J]. Journal of Computer Applications, 2021, 41(12): 3571-3577. 10.11772/j.issn.1001-9081.2021061054 | |
12 | YANG C, ZHANG L H, LU H C, et al. Saliency detection via graph-based manifold ranking [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3166-3173. 10.1109/cvpr.2013.407 |
13 | LI X H, LU H C, ZHANG L H, et al. Saliency detection via dense and sparse reconstruction[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2976-2983. 10.1109/iccv.2013.370 |
14 | YAN Q, XU L, SHI J P, et al. Hierarchical saliency detection [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 1155-1162. 10.1109/cvpr.2013.153 |
15 | QIN Y, LU H C, XU Y Q, et al. Saliency detection via cellular automata[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 110-119. 10.1109/cvpr.2015.7298606 |
16 | TU W C, HE S F, YANG Q X, et al. Real-time salient object detection with a minimum spanning tree [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2334-2342. 10.1109/cvpr.2016.256 |
17 | 赵恒,安维胜,付为刚. 深度导向显著性检测算法[J]. 计算机应用, 2019, 39(1): 143-147. 10.11772/j.issn.1001-9081.2018061194 |
ZHAO H, AN W S, FU W G. Saliency detection algorithm of deep guidance[J]. Journal of Computer Applications, 2019, 39(1): 143-147. 10.11772/j.issn.1001-9081.2018061194 | |
18 | 后云龙,朱磊,陈琴,等. 基于高斯差分特征网络的显著目标检测[J]. 计算机应用, 2021, 41(3): 706-713. 10.11772/j.issn.1001-9081.2020060957 |
HOU Y L, ZHU L, CHEN Q, et al. Salient object detection based on difference of Gaussian feature network [J]. Journal of Computer Applications, 2021, 41(3): 706-713. 10.11772/j.issn.1001-9081.2020060957 | |
19 | 温静,宋建伟. 基于多级全局信息传递模型的视觉显著性检测[J]. 计算机应用, 2021, 41(1): 208-214. 10.11772/j.issn.1001-9081.2020060968 |
WEN J, SONG J W. Visual saliency detection based on multi-level global information propagation model [J]. Journal of Computer Applications, 2021, 41(1): 208-214. 10.11772/j.issn.1001-9081.2020060968 | |
20 | LI G B, XIE Y, LIN L. Weakly supervised salient object detection using image labels [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 7024-7031. 10.1609/aaai.v32i1.12308 |
21 | 谭台哲,轩康西,曾群生. 基于图像级标签及超像素块的弱监督显著性检测[J]. 计算机应用研究, 2020, 37(2): 601-605. 10.19734/j.issn.1001-3695.2018.06.0576 |
TAN T Z, XUAN K X, ZENG Q S. Supervised significant detection based on image level labels and superpixel blocks [J]. Application Research of Computers, 2020, 37(2): 601-605. 10.19734/j.issn.1001-3695.2018.06.0576 | |
22 | WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3796-3805. 10.1109/cvpr.2017.404 |
23 | ZENG Y, ZHUGE Y Z, LU H C, et al. Multi-source weak supervision for saliency detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6067-6076. 10.1109/cvpr.2019.00623 |
24 | LIU Y X, WANG P J, CAO Y, et al. Weakly-supervised salient object detection with saliency bounding boxes[J]. IEEE Transactions on Image Processing, 2021, 30: 4423-4435. 10.1109/tip.2021.3071691 |
25 | DAI J F, HE K M, SUN J. BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1635-1643. 10.1109/iccv.2015.191 |
26 | KHOREVA A, BENENSON R, HOSANG J, et al. Simple does it: weakly supervised instance and semantic segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 876-885. 10.1109/cvpr.2017.181 |
27 | ROTHER C, KOLMOGOROV V, BLAKE A. “GrabCut”: interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314. 10.1145/1015706.1015720 |
28 | LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3912-3921. 10.1109/cvpr.2019.00404 |
29 | BOYKOV Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images [C]// Proceedings 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001,1: 105-112. |
30 | LI G B, YU Y Z. Visual saliency based on multiscale deep features[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5455-5463. 10.1109/cvpr.2015.7299184 |
[1] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[2] | Zimeng ZHU, Zhixin LI, Zhan HUAN, Ying CHEN, Jiuzhen LIANG. Weakly supervised video anomaly detection based on triplet-centered guidance [J]. Journal of Computer Applications, 2024, 44(5): 1452-1457. |
[3] | Cong HU, Gang HUA. Weakly supervised action localization method based on attention mechanism [J]. Journal of Computer Applications, 2022, 42(3): 960-967. |
[4] | Quan CHEN, Li LI, Yongle CHEN, Yuexing DUAN. Adversarial attack algorithm for deep learning interpretability [J]. Journal of Computer Applications, 2022, 42(2): 510-518. |
[5] | Shujie QI, Chunyi CHEN, Xiaojuan HU, Haiyang YU. Visual‑saliency‑driven reuse algorithm of indirect lighting in 3D scene rendering [J]. Journal of Computer Applications, 2022, 42(11): 3551-3557. |
[6] | Ping LUO, Ling DING, Xue YANG, Yang XIANG. Chinese event detection based on data augmentation and weakly supervised adversarial training [J]. Journal of Computer Applications, 2022, 42(10): 2990-2995. |
[7] | Shuang DENG, Xiaohai HE, Linbo QING, Honggang CHEN, Qizhi TENG. Weakly supervised fine-grained classification method of Alzheimer’s disease based on improved visual geometry group network [J]. Journal of Computer Applications, 2022, 42(1): 302-309. |
[8] | LU Xinwei, YU Pengfei, LI Haiyan, LI Hongsong, DING Wenqian. Weakly supervised fine-grained image classification algorithm based on attention-attention bilinear pooling [J]. Journal of Computer Applications, 2021, 41(5): 1319-1325. |
[9] | HOU Yunlong, ZHU Lei, CHEN Qin, LYU Suidong. Salient object detection based on difference of Gaussian feature network [J]. Journal of Computer Applications, 2021, 41(3): 706-713. |
[10] | Xiaoyu LI, Tiyu FANG, Yingjie XIA, Jinping LI. Unsupervised salient object detection based on graph cut refinement and differentiable clustering [J]. Journal of Computer Applications, 2021, 41(12): 3571-3577. |
[11] | WANG Hongyu, ZHANG Yu, YANG Heng, MU Nan. Salient object detection in weak light images based on ant colony optimization algorithm [J]. Journal of Computer Applications, 2021, 41(10): 2970-2978. |
[12] | BIAN Xiaoyong, JIANG Peiling, ZHAO Min, DING Sheng, ZHANG Xiaolong. Multi-branch neural network model based weakly supervised fine-grained image classification method [J]. Journal of Computer Applications, 2020, 40(5): 1295-1300. |
[13] | SHI Xiangbin, ZHOU Jincheng, LIU Cuiwei. Weakly supervised action localization based on action template matching [J]. Journal of Computer Applications, 2019, 39(8): 2408-2413. |
[14] | HU Xuemin, YI Chonghui, CHEN Qin, CHEN Xi, CHEN Long. Abnormal crowd behavior detection based on motion saliency map [J]. Journal of Computer Applications, 2018, 38(4): 1164-1169. |
[15] | WANG Xin, ZHOU Yun, NING Chen, SHI Aiye. Image saliency detection via adaptive fusion of local and global sparse representation [J]. Journal of Computer Applications, 2018, 38(3): 866-872. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||