Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1911-1919.DOI: 10.11772/j.issn.1001-9081.2023060736
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Mengyuan HUANG1, Kan CHANG1,2(
), Mingyang LING1, Xinjie WEI1, Tuanfa QIN1,2
Received:2023-06-09
Revised:2023-08-08
Accepted:2023-08-10
Online:2023-08-30
Published:2024-06-10
Contact:
Kan CHANG
About author:HUANG Mengyuan, born in 1997, M. S. candidate. Her research interests include computer vision, exposure correction.Supported by:
黄梦源1, 常侃1,2(
), 凌铭阳1, 韦新杰1, 覃团发1,2
通讯作者:
常侃
作者简介:黄梦源(1997—),女(壮族),广西南宁人,硕士研究生,主要研究方向:计算机视觉、曝光调整基金资助:CLC Number:
Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance[J]. Journal of Computer Applications, 2024, 44(6): 1911-1919.
黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060736
| 算法 | LOL-v1数据集 | LOL-v2数据集 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | LPIPS | LOE | PSNR/dB | SSIM | LPIPS | LOE | |||
| MBLLEN[ | 18.76 | 0.881 3 | 0.091 1 | 14.08 | 410 | 19.12 | 0.846 7 | 0.153 3 | 23.18 | 458 |
| RetinexNet[ | 17.84 | 0.840 1 | 0.375 9 | 18.15 | 645 | 15.88 | 0.780 3 | 0.324 6 | 25.48 | 595 |
| KinD[ | 20.38 | 0.108 1 | 12.84 | 347 | 18.63 | 0.843 5 | 0.279 0 | 14.72 | 445 | |
| EnlightenGAN[ | 19.15 | 0.852 0 | 0.120 2 | 14.11 | 483 | 16.40 | 0.812 2 | 0.166 7 | 19.01 | 445 |
| Zero-DCE[ | 16.33 | 0.700 6 | 0.247 5 | 20.92 | 413 | 18.43 | 0.705 5 | 0.133 9 | 17.51 | 580 |
| DRBN[ | 18.80 | 0.891 3 | 14.55 | 511 | 20.14 | 0.8853 | 0.236 0 | 569 | ||
| DSLR[ | 0.841 5 | 0.208 0 | 12.86 | 573 | 18.60 | 0.824 2 | 0.0943 | 14.77 | 596 | |
| MSEC[ | 19.02 | 0.849 9 | 0.213 9 | 15.35 | 489 | 18.74 | 0.805 7 | 0.316 5 | 14.23 | 588 |
| UNIE[ | 21.52 | 0.837 2 | 0.176 0 | 0.813 5 | 0.217 1 | 11.87 | ||||
| PairLIE[ | 19.51 | 0.820 1 | 0.171 9 | 13.87 | 347 | 18.03 | 0.790 9 | 0.205 3 | 15.28 | 493 |
| PELG | 23.94 | 0.9061 | 0.0926 | 10.47 | 244 | 21.40 | 11.63 | 258 | ||
Tab.1 Performance comparison among various algorithms on different datasets
| 算法 | LOL-v1数据集 | LOL-v2数据集 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | LPIPS | LOE | PSNR/dB | SSIM | LPIPS | LOE | |||
| MBLLEN[ | 18.76 | 0.881 3 | 0.091 1 | 14.08 | 410 | 19.12 | 0.846 7 | 0.153 3 | 23.18 | 458 |
| RetinexNet[ | 17.84 | 0.840 1 | 0.375 9 | 18.15 | 645 | 15.88 | 0.780 3 | 0.324 6 | 25.48 | 595 |
| KinD[ | 20.38 | 0.108 1 | 12.84 | 347 | 18.63 | 0.843 5 | 0.279 0 | 14.72 | 445 | |
| EnlightenGAN[ | 19.15 | 0.852 0 | 0.120 2 | 14.11 | 483 | 16.40 | 0.812 2 | 0.166 7 | 19.01 | 445 |
| Zero-DCE[ | 16.33 | 0.700 6 | 0.247 5 | 20.92 | 413 | 18.43 | 0.705 5 | 0.133 9 | 17.51 | 580 |
| DRBN[ | 18.80 | 0.891 3 | 14.55 | 511 | 20.14 | 0.8853 | 0.236 0 | 569 | ||
| DSLR[ | 0.841 5 | 0.208 0 | 12.86 | 573 | 18.60 | 0.824 2 | 0.0943 | 14.77 | 596 | |
| MSEC[ | 19.02 | 0.849 9 | 0.213 9 | 15.35 | 489 | 18.74 | 0.805 7 | 0.316 5 | 14.23 | 588 |
| UNIE[ | 21.52 | 0.837 2 | 0.176 0 | 0.813 5 | 0.217 1 | 11.87 | ||||
| PairLIE[ | 19.51 | 0.820 1 | 0.171 9 | 13.87 | 347 | 18.03 | 0.790 9 | 0.205 3 | 15.28 | 493 |
| PELG | 23.94 | 0.9061 | 0.0926 | 10.47 | 244 | 21.40 | 11.63 | 258 | ||
| 算法 | 参数量/106 | 浮点运算量/109 | 运行时间/ms |
|---|---|---|---|
| MBLLEN[ | 0.45 | 73.09 | 32.7 |
| RetinexNet[ | 0.44 | 141.26 | 25.6 |
| KinD[ | 8.02 | 119.55 | 16.2 |
| EnlightenGAN[ | 8.64 | 65.78 | 12.0 |
| Zero-DCE[ | 0.08 | 20.76 | 3.4 |
| DRBN[ | 0.56 | 42.41 | 21.6 |
| DSLR[ | 14.93 | 12.4 | |
| MSEC[ | 7.02 | 38.40 | 9.7 |
| UNIE[ | 8.64 | 65.70 | 9.9 |
| PairLIE[ | 89.39 | 13.3 | |
| PELG | 0.71 | 26.28 |
Tab.2 Comparisons of model size, FLOPs and runtime
| 算法 | 参数量/106 | 浮点运算量/109 | 运行时间/ms |
|---|---|---|---|
| MBLLEN[ | 0.45 | 73.09 | 32.7 |
| RetinexNet[ | 0.44 | 141.26 | 25.6 |
| KinD[ | 8.02 | 119.55 | 16.2 |
| EnlightenGAN[ | 8.64 | 65.78 | 12.0 |
| Zero-DCE[ | 0.08 | 20.76 | 3.4 |
| DRBN[ | 0.56 | 42.41 | 21.6 |
| DSLR[ | 14.93 | 12.4 | |
| MSEC[ | 7.02 | 38.40 | 9.7 |
| UNIE[ | 8.64 | 65.70 | 9.9 |
| PairLIE[ | 89.39 | 13.3 | |
| PELG | 0.71 | 26.28 |
| 算法 | LP | 层间引导 | LEM | PSNR/dB | SSIM | 参数量/106 | 浮点运算量/109 | 运算时间/ms |
|---|---|---|---|---|---|---|---|---|
| 变种算法1 | × | × | × | 18.44 | 0.767 0 | 0.74 | 194.18 | 22.5 |
| 变种算法2 | √ | × | × | 20.56 | 0.892 6 | 0.77 | 21.15 | 5.8 |
| 变种算法3 | √ | √ | × | 21.17 | 0.75 | |||
| 变种算法4 | √ | × | √ | 22.75 | 0.894 3 | 29.72 | 9.0 | |
| 变种算法5 | √ | √ | √ | 0.900 8 | 0.71 | 26.12 | 8.3 | |
| 完整算法 | √ | √ | √ | 23.94 | 0.906 1 | 0.71 | 26.28 | 8.1 |
Tab.3 Influence of LP and layer guidance
| 算法 | LP | 层间引导 | LEM | PSNR/dB | SSIM | 参数量/106 | 浮点运算量/109 | 运算时间/ms |
|---|---|---|---|---|---|---|---|---|
| 变种算法1 | × | × | × | 18.44 | 0.767 0 | 0.74 | 194.18 | 22.5 |
| 变种算法2 | √ | × | × | 20.56 | 0.892 6 | 0.77 | 21.15 | 5.8 |
| 变种算法3 | √ | √ | × | 21.17 | 0.75 | |||
| 变种算法4 | √ | × | √ | 22.75 | 0.894 3 | 29.72 | 9.0 | |
| 变种算法5 | √ | √ | √ | 0.900 8 | 0.71 | 26.12 | 8.3 | |
| 完整算法 | √ | √ | √ | 23.94 | 0.906 1 | 0.71 | 26.28 | 8.1 |
高频分量 层数n | PSNR/ dB | SSIM | 参数量/ 106 | 浮点运算量/ 109 | 运算时间/ ms |
|---|---|---|---|---|---|
| 1 | 22.45 | 0.893 5 | 0.58 | 93.09 | 16.8 |
| 2 | 23.03 | 39.65 | 10.3 | ||
| 3 | 23.94 | 0.906 1 | 0.71 | 26.28 | 8.1 |
| 4 | 0.895 1 | 0.77 | |||
| 5 | 22.06 | 0.886 7 | 0.84 | 22.11 | 10.9 |
Tab.4 Influence of decomposition layers in LP
高频分量 层数n | PSNR/ dB | SSIM | 参数量/ 106 | 浮点运算量/ 109 | 运算时间/ ms |
|---|---|---|---|---|---|
| 1 | 22.45 | 0.893 5 | 0.58 | 93.09 | 16.8 |
| 2 | 23.03 | 39.65 | 10.3 | ||
| 3 | 23.94 | 0.906 1 | 0.71 | 26.28 | 8.1 |
| 4 | 0.895 1 | 0.77 | |||
| 5 | 22.06 | 0.886 7 | 0.84 | 22.11 | 10.9 |
| 低频层RAB数 | PSNR /dB | SSIM | 参数量/ 106 | 浮点运算量/ 109 | 运算时间/ ms |
|---|---|---|---|---|---|
| 2 | 22.83 | 0.899 5 | 0.56 | 25.68 | 7.1 |
| 3 | 23.45 | ||||
| 4 | 23.94 | 0.906 1 | 0.71 | 26.28 | 8.1 |
| 5 | 0.905 6 | 0.78 | 26.59 | 8.5 | |
| 6 | 23.79 | 0.906 1 | 0.86 | 26.89 | 8.9 |
Tab.5 Influence of RAB number in low-frequency layer
| 低频层RAB数 | PSNR /dB | SSIM | 参数量/ 106 | 浮点运算量/ 109 | 运算时间/ ms |
|---|---|---|---|---|---|
| 2 | 22.83 | 0.899 5 | 0.56 | 25.68 | 7.1 |
| 3 | 23.45 | ||||
| 4 | 23.94 | 0.906 1 | 0.71 | 26.28 | 8.1 |
| 5 | 0.905 6 | 0.78 | 26.59 | 8.5 | |
| 6 | 23.79 | 0.906 1 | 0.86 | 26.89 | 8.9 |
| DRM中RAB数 | PSNR/ dB | SSIM | 参数量/ 106 | 浮点运算量/ 109 | 运算时间/ ms |
|---|---|---|---|---|---|
| 1 | 22.87 | 0.888 2 | 0.47 | 11.70 | 4.2 |
| 2 | 23.56 | 0.902 8 | |||
| 3 | 23.94 | 0.71 | 26.28 | 8.1 | |
| 4 | 0.909 7 | 0.82 | 33.57 | 10.6 | |
| 5 | 23.75 | 0.904 5 | 0.93 | 40.87 | 13.0 |
Tab.6 Influence of RAB number in DRM
| DRM中RAB数 | PSNR/ dB | SSIM | 参数量/ 106 | 浮点运算量/ 109 | 运算时间/ ms |
|---|---|---|---|---|---|
| 1 | 22.87 | 0.888 2 | 0.47 | 11.70 | 4.2 |
| 2 | 23.56 | 0.902 8 | |||
| 3 | 23.94 | 0.71 | 26.28 | 8.1 | |
| 4 | 0.909 7 | 0.82 | 33.57 | 10.6 | |
| 5 | 23.75 | 0.904 5 | 0.93 | 40.87 | 13.0 |
| 1 | LEE C, LEE C, KIM C-S. Contrast enhancement based on layered difference representation of 2D histograms [J]. IEEE Transactions on Image Processing, 2013, 22 (12): 5372-5384. |
| 2 | PIERRE F, J-F AUJOL, BUGEAU A, et al. Hue-preserving perceptual contrast enhancement [C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 4067-4071. |
| 3 | GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. |
| 4 | JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. |
| 5 | GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1777-1786. |
| 6 | JIN Y, YANG W, TAN T R. Unsupervised night image enhancement: when layer decomposition meets light-effects suppression [C]// Proceedings of the 17th European Conference on Computer Vision. Berlin: Springer, 2022: 404-421. |
| 7 | FU Z, YANG Y, TU X, et al. Learning a simple low-light image enhancer from paired low-light instances [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22252-22261. |
| 8 | YANG W, WANG S, FANG Y, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3060-3069. |
| 9 | 祖佳贞, 周永霞, 陈乐. 结合注意力的双分支残差低光照图像增强[J]. 计算机应用, 2023, 43(4): 1240-1247. |
| ZU J Z, ZHOU Y X, CHEN L. Dual-branch residual low-light image enhancement combined with attention[J]. Journal of Computer Applications, 2023, 43(4): 1240-1247. | |
| 10 | 谌贵辉, 林瑾瑜, 李跃华, 等. 注意力机制下的多阶段低照度图像增强网络[J]. 计算机应用, 2023, 43(2): 552-559. |
| CHEN G H, LIN J Y, LI Y H, et al. Multi-stage low-illuminance image enhancement network based on attention mechanism[J]. Journal of Computer Applications, 2023, 43(2): 552-559. | |
| 11 | LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs [C]// Proceedings of the 2018 British Machine Vision Conference. Birmingham: British Machine Vision Association, 2018: 220. |
| 12 | WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement [C]// Proceedings of the 2018 British Machine Vision Conference. Birmingham: British Machine Vision Association, 2018: 155. |
| 13 | ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer [C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640. |
| 14 | LIM S, KIM W. DSLR: deep stacked Laplacian restorer for low-light image enhancement [J]. IEEE Transactions on Multimedia, 2021, 23: 4272-4284. |
| 15 | AFIFI M, DERPANIS K G, OMMER B, et al. Learning multi-scale photo exposure correction [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9157-9167. |
| 16 | BURT P, ADELSON E. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. |
| 17 | LAND E H, McCANN J J. Lightness and Retinex theory [J]. The Journal of the Optical Society of America, 1971, 61(1): 1-11. |
| 18 | DABOV K, FOI A, KATKOVNIK V, et al. Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space [C]// Proceedings of the 2007 IEEE International Conference on Image Processing. Piscataway: IEEE, 2007: 313-316. |
| 19 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
| 20 | WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 15th European Conference on Computer Vision. Berlin: Springer, 2018: 3-19. |
| 21 | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. |
| 22 | YAN Q, GONG D, WANG P, et al. SharpFormer: learning local feature preserving global representations for image deblurring [J]. IEEE Transactions on Image Processing, 2023, 32: 2857-2866. |
| 23 | GAO G, XU Z, LI J, et al. CTCNet: a CNN-Transformer cooperation network for face image super-resolution[J]. IEEE Transactions on Image Processing, 2023, 32:1978-1991. |
| 24 | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 586-595. |
| 25 | HOVIS J. Color vision: perspectives from different disciplines [J]. Optometry and Vision Science, 1999, 76(1): 10. |
| 26 | YING Z, LI G, REN Y, et al. A new low-light image enhancement algorithm using camera response model [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 3015-3022. |
| [1] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
| [2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
| [3] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
| [4] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
| [5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
| [6] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
| [7] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
| [8] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
| [9] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
| [10] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
| [11] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
| [12] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
| [13] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
| [14] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
| [15] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||