Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (9): 2970-2974.DOI: 10.11772/j.issn.1001-9081.2023091371
• Frontier and comprehensive applications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Jing QIN1, Zhiguang QIN1(
), Fali LI2, Yueheng PENG2
												  
						
						
						
					
				
Received:2023-10-10
															
							
																	Revised:2024-01-09
															
							
																	Accepted:2024-01-12
															
							
							
																	Online:2024-01-31
															
							
																	Published:2024-09-10
															
							
						Contact:
								Zhiguang QIN   
													About author:QIN Jing, born in 1994, Ph. D. candidate. His research interests include medical image, signal processing.Supported by:通讯作者:
					秦志光
							作者简介:秦璟(1994—),男,四川成都人,博士研究生,CCF会员,主要研究方向:医学图像、信号处理基金资助:CLC Number:
Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network[J]. Journal of Computer Applications, 2024, 44(9): 2970-2974.
秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023091371
| Layer | Filters | Size | Activation | Output | 
|---|---|---|---|---|
| Input | (1 280,21) | |||
| Embedding | 256 | 3 | (1 280,256) | |
| Prob Attn | 256 | 5 | GeLU | (1 280,256) | 
| Dropout | Dropout=0.1 | (1 280,256) | ||
| Conv 1d | 256 | 3 | (1 280,256) | |
| BN 1d | 256 | (1 280,256) | ||
| Activation | ELU | (1 280,256) | ||
| Maxpool 1d | 256 | 3 | Stride=2 | (640,256) | 
| Prob Attn | 128 | 5 | GeLU | (640,128) | 
| Dropout | Dropout=0.1 | (640,128) | ||
| Conv 1d | 128 | 3 | (640,128) | |
| BN 1d | 128 | (640,128) | ||
| Activation | ELU | (640,128) | ||
| Maxpool 1d | 64 | 3 | Stride=2 | (320,64) | 
| Prob Attn | 64 | 5 | GeLU | (320,64) | 
| Dropout | Dropout=0.1 | (320,64) | ||
| Conv 1d | 64 | 3 | (320,64) | |
| BN 1d | 64 | (320,64) | ||
| Activation | ELU | (320,64) | ||
| Maxpool 1d | 64 | 3 | Stride=2 | (160,64) | 
| Flatten | (10 240,) | |||
| Linear | (512,) | |||
| Linear | Softmax | (2,) | 
Tab. 1 Network parameters of PSANet
| Layer | Filters | Size | Activation | Output | 
|---|---|---|---|---|
| Input | (1 280,21) | |||
| Embedding | 256 | 3 | (1 280,256) | |
| Prob Attn | 256 | 5 | GeLU | (1 280,256) | 
| Dropout | Dropout=0.1 | (1 280,256) | ||
| Conv 1d | 256 | 3 | (1 280,256) | |
| BN 1d | 256 | (1 280,256) | ||
| Activation | ELU | (1 280,256) | ||
| Maxpool 1d | 256 | 3 | Stride=2 | (640,256) | 
| Prob Attn | 128 | 5 | GeLU | (640,128) | 
| Dropout | Dropout=0.1 | (640,128) | ||
| Conv 1d | 128 | 3 | (640,128) | |
| BN 1d | 128 | (640,128) | ||
| Activation | ELU | (640,128) | ||
| Maxpool 1d | 64 | 3 | Stride=2 | (320,64) | 
| Prob Attn | 64 | 5 | GeLU | (320,64) | 
| Dropout | Dropout=0.1 | (320,64) | ||
| Conv 1d | 64 | 3 | (320,64) | |
| BN 1d | 64 | (320,64) | ||
| Activation | ELU | (320,64) | ||
| Maxpool 1d | 64 | 3 | Stride=2 | (160,64) | 
| Flatten | (10 240,) | |||
| Linear | (512,) | |||
| Linear | Softmax | (2,) | 
| 模型 | 准确度 | 精确度 | 敏感度 | 特异度 | F1-score | 
|---|---|---|---|---|---|
| EEGNet | 84.58 | 85.59 | 94.78 | 58.43 | 89.89 | 
| DSNet | 89.05 | 90.83 | 94.40 | 75.07 | 92.57 | 
| DeprNet | 90.03 | 89.23 | 95.88 | 76.77 | 93.28 | 
| PSANet | 91.57 | 90.28 | 99.06 | 79.98 | 94.46 | 
Tab. 2 Performance comparison among different models in classification of major depressive disorder
| 模型 | 准确度 | 精确度 | 敏感度 | 特异度 | F1-score | 
|---|---|---|---|---|---|
| EEGNet | 84.58 | 85.59 | 94.78 | 58.43 | 89.89 | 
| DSNet | 89.05 | 90.83 | 94.40 | 75.07 | 92.57 | 
| DeprNet | 90.03 | 89.23 | 95.88 | 76.77 | 93.28 | 
| PSANet | 91.57 | 90.28 | 99.06 | 79.98 | 94.46 | 
| 模型 | 参数量 | 模型 | 参数量 | 
|---|---|---|---|
| PSANet | 3.74 | Transformer-encoder | 90.68 | 
| EEGNet | 8.13 | 
Tab. 3 Comparison of parameters of different models in classification of major depressive disorder
| 模型 | 参数量 | 模型 | 参数量 | 
|---|---|---|---|
| PSANet | 3.74 | Transformer-encoder | 90.68 | 
| EEGNet | 8.13 | 
| 1 | KENNEDY S H. Core symptoms of major depressive disorder: relevance to diagnosis and treatment [J]. Dialogues in Clinical Neuroscience, 2008, 10(3): 271-277. | 
| 2 | CLARK M, DiBENEDETTI D, PEREZ V. Cognitive dysfunction and work productivity in major depressive disorder [J]. Expert Review of Pharmacoeconomics & Outcomes Research, 2016, 16(4): 455-463. | 
| 3 | BECH P, BOLWIG T G, KRAMP P, et al. The Bech-Rafaelsen mania scale and the Hamilton depression scale: evaluation of homogeneity and inter-observer reliability [J]. Acta Psychiatrica Scandinavica, 1979, 59(4): 420-430. | 
| 4 | BUZUG T M. Computed tomography [M]// Springer Handbook of Medical Technology. Berlin: Springer, 2011: 311-342. | 
| 5 | BIASIUCCI A, FRANCESCHIELLO B, MURRAY M M. Electroencephalography [J]. Current Biology, 2019, 29(3): R80-R85. | 
| 6 | AL-SAEGH A, DAWWD S A, ABDUL-JABBAR J M. Deep learning for motor imagery EEG-based classification: a review [J]. Biomedical Signal Processing and Control, 2021, 63: 102172. | 
| 7 | ZHANG J, YIN Z, CHEN P, et al. Emotion recognition using multi-modal data and machine learning techniques: a tutorial and review [J]. Information Fusion, 2020, 59: 103-126. | 
| 8 | ZHANG X, LI J, HOU K, et al. EEG-based depression detection using convolutional neural network with demographic attention mechanism [C]// Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2020: 128-133. | 
| 9 | WANG D, LEI C, ZHANG X, et al. Identification of depression with a semi-supervised GCN based on EEG data [C]// Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2021: 2338-2345. | 
| 10 | SU Y, ZHANG Z X, CAI Q, et al. 3DMKDR: 3D multiscale kernels CNN model for depression recognition based on EEG [J]. Journal of Beijing Institute of Technology, 2023, 32(2): 230-241. | 
| 11 | SONG X W, YAN D D, ZHAO L L, et al. LSDD-EEGNet: an efficient end-to-end framework for EEG-based depression detection[J]. Biomedical Signal Processing and Control, 2022, 75: 103612. | 
| 12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. | 
| 13 | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting [C]// Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021, 35(12): 11106-11115. | 
| 14 | LIU W, ZHANG C, WANG X, et al. Functional connectivity of major depression disorder using ongoing EEG during music perception [J]. Clinical Neurophysiology, 2020, 131(10): 2413-2422. | 
| 15 | MUMTAZ W, ALI S S A, YASIN M A M, et al. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD) [J]. Medical & Biological Engineering & Computing, 2018, 56: 233-246. | 
| 16 | ZHANG B, YAN G, YANG Z, et al. Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 215-229. | 
| 17 | MUMTAZ W, XIA L, MOHD YASIN M A, et al. A wavelet-based technique to predict treatment outcome for major depressive disorder [J]. PLoS ONE, 2017, 12(2): e0171409. | 
| 18 | LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering, 2018, 15(5): 056013. | 
| 19 | DENG X, ZHANG B, YU N, et al. Advanced TSGL-EEGNet for motor imagery EEG-based brain-computer interfaces [J]. IEEE Access, 2021, 9: 25118-25130. | 
| 20 | HUANG W, XUE Y, HU L, et al. S-EEGNet: electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation [J]. IEEE Access, 2020, 8: 131636-131646. | 
| 21 | TSUKAHARA A, ANZAI Y, TANAKA K, et al. A design of EEGNet‐based inference processor for pattern recognition of EEG using FPGA [J]. Electronics and Communications in Japan, 2021, 104(1): 53-64. | 
| 22 | SEAL A, BAJPAI R, AGNIHOTRI J, et al. DeprNet: a deep convolution neural network framework for detecting depression using EEG [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2505413. | 
| 23 | TRIVEDI M H, McGRATH P J, FAVA M, et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design [J]. Journal of Psychiatric Research, 2016, 78: 11-23. | 
| 24 | XIA M, WU Y, GUO D, et al. DSNet: EEG-based spatial convolutional neural network for detecting major depressive disorder [C]// Proceedings of the 3rd International Workshop on Human Brain and Artificial Intelligence. Cham: Springer, 2022: 50-59. | 
| 25 | WANG B, KANG Y, HUO D, et al. Depression signal correlation identification from different EEG channels based on CNN feature extraction [J]. Psychiatry Research: Neuroimaging, 2023, 328: 111582. | 
| 26 | LI L, WANG X, LI J, et al. An EEG-based marker of functional connectivity: detection of major depressive disorder [J]. Cognitive Neurodynamics, 2024, 18: 1671-1687. | 
| 27 | AFZALI A, KHALEGHI A, HATEF B, et al. Automated major depressive disorder diagnosis using a dual-input deep learning model and image generation from EEG signals [J/OL]. Waves in Random and Complex Media, 2023: 1-16 [2023-12-23]. . | 
| 28 | MAHDI A F, AHMED A K. Major depressive disorder diagnosis based on PSD imaging of electroencephalogram EEG and AI [J]. Indonesian Journal of Electrical Engineering and Computer Science, 2022, 28(1): 535-544. | 
| 29 | RAVAN M, NOROOZI A, SANCHEZ M M, et al. Diagnostic deep learning algorithms that use resting EEG to distinguish major depressive disorder, bipolar disorder, and schizophrenia from each other and from healthy volunteers [J]. Journal of Affective Disorders, 2024, 346: 285-298. | 
| 30 | KSIBI A, ZAKARIAH M, MENZLI L J, et al. Electroencephalography-based depression detection using multiple machine learning techniques [J]. Diagnostics, 2023, 13(10): 1779. | 
| [1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [2] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. | 
| [3] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. | 
| [4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | 
| [5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. | 
| [6] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. | 
| [7] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [8] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. | 
| [9] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. | 
| [10] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [11] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | 
| [12] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. | 
| [13] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. | 
| [14] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. | 
| [15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||