Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 59-68.DOI: 10.11772/j.issn.1001-9081.2024010043
• Artificial intelligence • Previous Articles Next Articles
Xinran XU1,2, Shaobing ZHANG1,2,3(), Miao CHENG1,2,3, Yang ZHANG1,2,3, Shang ZENG1,2
Received:
2024-01-17
Revised:
2024-03-21
Accepted:
2024-03-21
Online:
2024-05-09
Published:
2025-01-10
Contact:
Shaobing ZHANG
About author:
XU Xinran, born in 1997, M. S. candidate. His research interests include artificial intelligence, predictive maintenance, industrial big data.Supported by:
徐欣然1,2, 张绍兵1,2,3(), 成苗1,2,3, 张洋1,2,3, 曾尚1,2
通讯作者:
张绍兵
作者简介:
徐欣然(1997—),男,四川成都人,硕士研究生,主要研究方向:人工智能、预测性维护、工业大数据;基金资助:
CLC Number:
Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model[J]. Journal of Computer Applications, 2025, 45(1): 59-68.
徐欣然, 张绍兵, 成苗, 张洋, 曾尚. 基于多路层次化混合专家模型的轴承故障诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 59-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010043
编号 | 名称 | 类别编号 | 标签名称 |
---|---|---|---|
0 | 工况 | 0 | N15_M01_F10 |
1 | N09_M07_F10 | ||
2 | N15_M07_F10 | ||
3 | N15_M07_F04 | ||
1 | 故障外因 | 0 | No fault |
1 | drilling | ||
2 | EDM(Electrical Discharge Machining) | ||
3 | electric engraver | ||
4 | fatigue: pitting | ||
5 | plastic deforms | ||
2 | 复合故障 | 0 | No fault |
1 | Artificial damage | ||
2 | Single damage | ||
3 | Repetitive damage | ||
4 | Multiple damage | ||
3 | 故障等级 | 0 | No fault |
1 | 0-2 mm fault | ||
2 | 2-4.5 mm fault | ||
3 | 4.5-13.5 mm fault | ||
4 | 内圈故障 | 0 | No fault |
1 | With fault | ||
5 | 外圈故障 | 0 | No fault |
1 | With fault |
Tab. 1 Label setting of PU
编号 | 名称 | 类别编号 | 标签名称 |
---|---|---|---|
0 | 工况 | 0 | N15_M01_F10 |
1 | N09_M07_F10 | ||
2 | N15_M07_F10 | ||
3 | N15_M07_F04 | ||
1 | 故障外因 | 0 | No fault |
1 | drilling | ||
2 | EDM(Electrical Discharge Machining) | ||
3 | electric engraver | ||
4 | fatigue: pitting | ||
5 | plastic deforms | ||
2 | 复合故障 | 0 | No fault |
1 | Artificial damage | ||
2 | Single damage | ||
3 | Repetitive damage | ||
4 | Multiple damage | ||
3 | 故障等级 | 0 | No fault |
1 | 0-2 mm fault | ||
2 | 2-4.5 mm fault | ||
3 | 4.5-13.5 mm fault | ||
4 | 内圈故障 | 0 | No fault |
1 | With fault | ||
5 | 外圈故障 | 0 | No fault |
1 | With fault |
工况名称 | 负载扭矩/(N·m) | 轴转速/(r·min-1) | 径向力/N |
---|---|---|---|
N15_M01_F10 | 0.1 | 1 500 | 1 000 |
N09_M07_F10 | 0.7 | 900 | 1 000 |
N15_M07_F10 | 0.7 | 1 500 | 1 000 |
N15_M07_F04 | 0.7 | 1 500 | 400 |
Tab. 2 Working condition parameters of PU
工况名称 | 负载扭矩/(N·m) | 轴转速/(r·min-1) | 径向力/N |
---|---|---|---|
N15_M01_F10 | 0.1 | 1 500 | 1 000 |
N09_M07_F10 | 0.7 | 900 | 1 000 |
N15_M07_F10 | 0.7 | 1 500 | 1 000 |
N15_M07_F04 | 0.7 | 1 500 | 400 |
组别 | 数据文件 | 轴承工况 | 说明 |
---|---|---|---|
组1 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | N15_M01_F10 | 自然损毁的单一工况轴承 |
组2 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | 所有工况 | 自然损毁的多种工况轴承 |
组3 | 所有文件 | 所有工况 | 全数据集 |
Tab. 3 Grouping method of PU
组别 | 数据文件 | 轴承工况 | 说明 |
---|---|---|---|
组1 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | N15_M01_F10 | 自然损毁的单一工况轴承 |
组2 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | 所有工况 | 自然损毁的多种工况轴承 |
组3 | 所有文件 | 所有工况 | 全数据集 |
参数 | 默认值 |
---|---|
DWA温度 | 10 |
单条数据长度 | 1 024 |
批大小 | 64 |
EU输出维度 | 64 |
单个EU的ResNet18单元数 | 3 |
数据读取总条数 | 200 000 |
学习率衰减步长 | 20 |
学习率衰减率 | 0.3 |
Tab. 4 Parameter setting of experiments
参数 | 默认值 |
---|---|
DWA温度 | 10 |
单条数据长度 | 1 024 |
批大小 | 64 |
EU输出维度 | 64 |
单个EU的ResNet18单元数 | 3 |
数据读取总条数 | 200 000 |
学习率衰减步长 | 20 |
学习率衰减率 | 0.3 |
名称 | 配置信息 |
---|---|
CPU | AMD Ryzen 7 5800X |
GPU | GeForce RTX3090(24 GB) |
操作系统 | Ubuntu 18.04.6 |
编程语言 | Python 3.8.0 |
框架 | torch 1.13.1+cu117 |
Tab. 5 Environment of experiments
名称 | 配置信息 |
---|---|
CPU | AMD Ryzen 7 5800X |
GPU | GeForce RTX3090(24 GB) |
操作系统 | Ubuntu 18.04.6 |
编程语言 | Python 3.8.0 |
框架 | torch 1.13.1+cu117 |
模型 | 分类准确率 | ||
---|---|---|---|
组1 | 组2 | 组3 | |
WDCNN | 86.47 | 69.43 | 46.93 |
EEMD-Hilbert+FWA-SVM | 91.42 | 79.25 | 51.75 |
ResNet18 | 93.21 | 74.74 | 49.59 |
MMoE+ResNet18 | 93.73 | 75.24 | 51.78 |
MSTACNN | 94.03 | 75.40 | 52.27 |
MHMoE(本文模型) | 97.24 | 89.13 | 68.72 |
Tab. 6 Accuracy comparison between MHMoE and other models
模型 | 分类准确率 | ||
---|---|---|---|
组1 | 组2 | 组3 | |
WDCNN | 86.47 | 69.43 | 46.93 |
EEMD-Hilbert+FWA-SVM | 91.42 | 79.25 | 51.75 |
ResNet18 | 93.21 | 74.74 | 49.59 |
MMoE+ResNet18 | 93.73 | 75.24 | 51.78 |
MSTACNN | 94.03 | 75.40 | 52.27 |
MHMoE(本文模型) | 97.24 | 89.13 | 68.72 |
组别 | 任务 | 准确率 | |
---|---|---|---|
MHMoE | OMoE+ResNet18 | ||
组1 | 故障等级 | 99.69 | 95.21 |
内圈故障 | 98.72 | 92.42 | |
外圈故障 | 98.61 | 93.03 | |
组2 | 故障等级 | 96.45 | 92.27 |
内圈故障 | 96.77 | 90.03 | |
外圈故障 | 94.92 | 88.60 | |
组3 | 故障等级 | 84.37 | 77.02 |
内圈故障 | 87.65 | 78.31 | |
外圈故障 | 89.33 | 78.11 |
Tab. 7 Accuracy comparison between MHMoE and OMoE+ResNet18
组别 | 任务 | 准确率 | |
---|---|---|---|
MHMoE | OMoE+ResNet18 | ||
组1 | 故障等级 | 99.69 | 95.21 |
内圈故障 | 98.72 | 92.42 | |
外圈故障 | 98.61 | 93.03 | |
组2 | 故障等级 | 96.45 | 92.27 |
内圈故障 | 96.77 | 90.03 | |
外圈故障 | 94.92 | 88.60 | |
组3 | 故障等级 | 84.37 | 77.02 |
内圈故障 | 87.65 | 78.31 | |
外圈故障 | 89.33 | 78.11 |
组别 | 任务 | 准确率 | |
---|---|---|---|
CEU+EEU | CEU | ||
组1 | 故障等级 | 99.69 | 99.01 |
内圈故障 | 98.72 | 97.47 | |
外圈故障 | 98.61 | 97.12 | |
组2 | 故障等级 | 97.39 | 93.95 |
内圈故障 | 96.77 | 92.58 | |
外圈故障 | 95.33 | 93.32 | |
组3 | 故障等级 | 84.37 | 82.31 |
内圈故障 | 87.65 | 81.23 | |
外圈故障 | 89.33 | 82.01 |
Tab. 8 Accuracy comparison between model only using CEU and model using CEU+EEU
组别 | 任务 | 准确率 | |
---|---|---|---|
CEU+EEU | CEU | ||
组1 | 故障等级 | 99.69 | 99.01 |
内圈故障 | 98.72 | 97.47 | |
外圈故障 | 98.61 | 97.12 | |
组2 | 故障等级 | 97.39 | 93.95 |
内圈故障 | 96.77 | 92.58 | |
外圈故障 | 95.33 | 93.32 | |
组3 | 故障等级 | 84.37 | 82.31 |
内圈故障 | 87.65 | 81.23 | |
外圈故障 | 89.33 | 82.01 |
组别 | 任务类别 | 准确率 | |||
---|---|---|---|---|---|
O+M+U | U | O+U | M+U | ||
组1 | 故障等级 | 99.69 | 97.17 | 99.23 | 99.17 |
内圈故障 | 98.72 | 97.63 | 97.03 | 97.85 | |
外圈故障 | 98.61 | 96.34 | 98.06 | 97.14 | |
组2 | 故障等级 | 97.39 | 93.42 | 94.03 | 93.39 |
内圈故障 | 96.77 | 91.03 | 93.32 | 94.56 | |
外圈故障 | 95.33 | 92.86 | 92.77 | 91.13 | |
组3 | 故障等级 | 84.37 | 80.34 | 82.06 | 82.12 |
内圈故障 | 87.65 | 82.21 | 82.33 | 83.57 | |
外圈故障 | 89.33 | 82.13 | 83.65 | 83.76 |
Tab. 9 Ablation experiments of hierarchical training stages
组别 | 任务类别 | 准确率 | |||
---|---|---|---|---|---|
O+M+U | U | O+U | M+U | ||
组1 | 故障等级 | 99.69 | 97.17 | 99.23 | 99.17 |
内圈故障 | 98.72 | 97.63 | 97.03 | 97.85 | |
外圈故障 | 98.61 | 96.34 | 98.06 | 97.14 | |
组2 | 故障等级 | 97.39 | 93.42 | 94.03 | 93.39 |
内圈故障 | 96.77 | 91.03 | 93.32 | 94.56 | |
外圈故障 | 95.33 | 92.86 | 92.77 | 91.13 | |
组3 | 故障等级 | 84.37 | 80.34 | 82.06 | 82.12 |
内圈故障 | 87.65 | 82.21 | 82.33 | 83.57 | |
外圈故障 | 89.33 | 82.13 | 83.65 | 83.76 |
1 | GAI J, SHEN J, HU Y, et al. An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing [J]. Measurement, 2020, 162: No.107901. |
2 | 李心一,谢志江,罗久飞.加窗插值快速傅里叶变换在滚动轴承故障诊断中的应用[J].中国机械工程, 2018, 29(10): 1166-1172. |
LI X Y, XIE Z J, LUO J F. Applications of windowed interpolation FFT algorithm in rolling bearing fault diagnosis [J]. China Mechanical Engineering, 2018, 29(10): 1166-1172. | |
3 | 向丹,岑健.基于EMD熵特征融合的滚动轴承故障诊断方法[J].航空动力学报, 2015, 30(5): 1149-1155. |
XIANG D, CEN J. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy [J]. Journal of Aerospace Power, 2015, 30(5): 1149-1155. | |
4 | 詹君,程龙生,彭宅铭.基于VMD和改进多分类马田系统的滚动轴承故障智能诊断[J].振动与冲击, 2020, 39(2): 32-39. |
ZHAN J, CHENG L S, PENG Z M. Intelligent fault diagnosis of rolling bearings based on the VMD and improved multi-classification Mahalanobis Taguchi system [J]. Journal of Vibration and Shock, 2020, 39(2): 32-39. | |
5 | 汪祖民,张志豪.基于卷积神经网络的机械故障诊断技术综述[J].计算机应用, 2022, 42(4): 1036-1043. |
WANG Z M, ZHANG Z H. Review of mechanical fault diagnosis technology based on convolutional neural network [J]. Journal of Computer Applications, 2022, 42(4): 1036-1043. | |
6 | 陈鑫,肖明清,文斌成.基于变分模态分解和混沌麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J].计算机应用, 2021, 41(S2): 118-123. |
CHEN X, XIAO M Q, WEN B C. Rolling bearing fault diagnosis based on variational mode decomposition, chaotic sparrow search algorithm and support vector machine [J]. Journal of Computer Applications, 2021, 41(S2): 118-123. | |
7 | 李益兵,王磊,江丽.基于PSO改进深度置信网络的滚动轴承故障诊断[J].振动与冲击, 2020, 39(5): 89-96. |
LI Y B, WANG L, JIANG L. Rolling bearing fault diagnosis based on DBN algorithm improved with PSO [J]. Journal of Vibration and Shock, 2020, 39(5): 89-96. | |
8 | 张敏,蔡振宇,包珊珊.基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J].西南交通大学学报, 2019, 54(3): 633-639. |
ZHANG M, CAI Z Y, BAO S S. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM [J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639. | |
9 | LEE D, JEONG J. Few-shot learning-based light-weight WDCNN model for bearing fault diagnosis in Siamese network [J]. Sensors, 2023, 23(14): No.6587. |
10 | 彭雪莹,江永全,杨燕.基于图卷积网络的迁移学习轴承服役故障诊断[J].计算机应用, 2021, 41(12): 3626-3631. |
YANG X Y, JIANG Y Q, YANG Y. Transfer learning based on graph convolutional network in bearing service fault diagnosis [J]. Journal of Computer Applications, 2021, 41(12): 3626-3631. | |
11 | 王照伟,刘传帅,赵文祥,等.多尺度多任务注意力卷积神经网络滚动轴承故障诊断方法[J].电机与控制学报, 2024, 28(7): 65-76. |
WANG Z W, LIU C S, ZHAO W X, et al. Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network [J]. Electric Machines and Control, 2024, 28(7): 65-76. | |
12 | ZHAO Z, LI T, WU J, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: an open source benchmark study [J]. ISA Transactions, 2020, 107: 224-255. |
13 | WANG Z, LIU Q, CHEN H, et al. A deformable CNN-DLSTM based transfer learning method for fault diagnosis of rolling bearing under multiple working conditions [J]. International Journal of Production Research, 2021, 59(16): 4811-4825. |
14 | 丁天淇.复杂工况下的轴承故障智能诊断方法研究[D].西安:西安理工大学, 2023: 25-36. |
DING T Q. Research on intelligent bearing fault diagnosis methods under complex working conditions [D]. Xi’an: Xi’an University of Technology, 2023: 25-36. | |
15 | LESSMEIER C, KIMOTHO, J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification [J]. PHM Society European Conference, 2016, 3(1): No.1577. |
16 | 许迪.基于微弱信号处理的滚动轴承复合故障诊断方法研究[D].哈尔滨:哈尔滨理工大学, 2023: 16-17. |
XU D. Research on compound fault diagnosis method of rolling bearing based on weak signal processing [D]. Harbin: Harbin University of Science and Technology, 2023: 16-17. | |
17 | HEUER F, MANTOWSKY S, BUKHARI S S, et al. Multitask-CenterNet (MCN): efficient and diverse multitask learning using an anchor free approach [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 997-1005. |
18 | LIU X, HE P, CHEN W, et al. Multi-task deep neural networks for natural language understanding [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019:4487-4496. |
19 | RUDER S. An overview of multi-task learning in deep neural networks [EB/OL]. [2023-12-03]. . |
20 | MA J Q, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1930-1939. |
21 | TANG H, LIU J, ZHAO M, et al. Progressive Layered Extraction (PLE): a novel Multi-Task Learning (MTL) model for personalized recommendations [C]// Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 269-278. |
22 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491. |
23 | CHEN Z, BADRINARAYANAN V, LEE C Y, et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 794-803. |
24 | LIU S, JOHNS E, DAVISON A J. End-To-end multi-task learning with attention [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1871-1880. |
25 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
26 | WU S, ZHONG S, LIU Y. Deep residual learning for image steganalysis [J]. Multimedia Tools and Applications, 2018, 77(9): 10437-10453. |
[1] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[2] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[3] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[4] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[6] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[7] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[8] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[9] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[10] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[11] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[12] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[13] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[14] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[15] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||