Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 127-135.DOI: 10.11772/j.issn.1001-9081.2024010068
• Cyber security • Previous Articles Next Articles
Yan YAN, Xingying QIAN(), Pengbin YAN, Jie YANG
Received:
2024-01-19
Revised:
2024-04-05
Accepted:
2024-04-07
Online:
2024-05-09
Published:
2025-01-10
Contact:
Xingying QIAN
About author:
YAN Yan, born in 1980, Ph. D., professor. Her research interests include privacy protection, information security.Supported by:
通讯作者:
钱星颖
作者简介:
晏燕(1980—),女,甘肃兰州人,教授,博士,CCF高级会员,主要研究方向:隐私保护、信息安全;基金资助:
CLC Number:
Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data[J]. Journal of Computer Applications, 2025, 45(1): 127-135.
晏燕, 钱星颖, 闫鹏斌, 杨杰. 位置大数据的联邦学习统计预测与差分隐私保护方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 127-135.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010068
模型 | 浮点运算量/FLOPs | 参数量/106 |
---|---|---|
CNN | 15.50 | 0.174 |
LSTM | 13.46 | 0.166 |
ConvLSTM | 16.16 | 0.196 |
PVTv2 | 19.72 | 0.159 |
PVTv2-CBAM | 19.90 | 0.163 |
Tab. 1 Computational volumes efficiency and parameter sizes of different models
模型 | 浮点运算量/FLOPs | 参数量/106 |
---|---|---|
CNN | 15.50 | 0.174 |
LSTM | 13.46 | 0.166 |
ConvLSTM | 16.16 | 0.196 |
PVTv2 | 19.72 | 0.159 |
PVTv2-CBAM | 19.90 | 0.163 |
模型 | MAE | RMSE | H(P,Q) |
---|---|---|---|
CNN | 0.060±0.059 | 0.133±0.068 | 0.084±0.002 |
LSTM | 0.119±0.050 | 0.123±0.060 | 0.123±0.005 |
ConvLSTM | 0.159±0.088 | 0.185±0.045 | 0.119±0.010 |
PVTv2 | 0.097±0.083 | 0.127±0.073 | 0.051±0.013 |
PVTv2-CBAM | 0.060±0.007 | 0.093±0.019 | 0.053±0.005 |
Tab. 2 Evaluation metrics of accuracy of different models on Yellow_tripdata dataset
模型 | MAE | RMSE | H(P,Q) |
---|---|---|---|
CNN | 0.060±0.059 | 0.133±0.068 | 0.084±0.002 |
LSTM | 0.119±0.050 | 0.123±0.060 | 0.123±0.005 |
ConvLSTM | 0.159±0.088 | 0.185±0.045 | 0.119±0.010 |
PVTv2 | 0.097±0.083 | 0.127±0.073 | 0.051±0.013 |
PVTv2-CBAM | 0.060±0.007 | 0.093±0.019 | 0.053±0.005 |
模型 | MAE | RMSE | H(P,Q) |
---|---|---|---|
CNN | 0.071±0.010 | 0.086±0.035 | 0.065±0.010 |
LSTM | 0.075±0.040 | 0.060±0.039 | 0.023±0.013 |
ConvLSTM | 0.069±0.011 | 0.043±0.002 | 0.084±0.010 |
PVTv2 | 0.041±0.021 | 0.045±0.011 | 0.038±0.014 |
PVTv2-CBAM | 0.042±0.029 | 0.034±0.017 | 0.033±0.011 |
Tab. 3 Evaluation metrics of accuracy of different models on T-Driver dataset
模型 | MAE | RMSE | H(P,Q) |
---|---|---|---|
CNN | 0.071±0.010 | 0.086±0.035 | 0.065±0.010 |
LSTM | 0.075±0.040 | 0.060±0.039 | 0.023±0.013 |
ConvLSTM | 0.069±0.011 | 0.043±0.002 | 0.084±0.010 |
PVTv2 | 0.041±0.021 | 0.045±0.011 | 0.038±0.014 |
PVTv2-CBAM | 0.042±0.029 | 0.034±0.017 | 0.033±0.011 |
PVTv2 (基准) | CBAM | 差分隐私 | Yellow_tripdata | T-Driver | ||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | H(P,Q) | MAE | RMSE | H(P,Q) | |||
✓ | 0.097±0.083 | 0.127±0.073 | 0.051±0.013 | 0.041±0.021 | 0.045±0.011 | 0.038±0.014 | ||
✓ | ✓ | 0.060±0.007 | 0.093±0.019 | 0.053±0.005 | 0.042±0.029 | 0.034±0.017 | 0.033±0.011 | |
✓ | ✓ | 0.094±0.007 | 0.137±0.051 | 0.089±0.021 | 0.039±0.014 | 0.051±0.016 | 0.038±0.018 | |
✓ | ✓ | ✓ | 0.054±0.015 | 0.089±0.030 | 0.058±0.012 | 0.042±0.003 | 0.037±0.021 | 0.034±0.011 |
Tab. 4 Results of ablation experiments
PVTv2 (基准) | CBAM | 差分隐私 | Yellow_tripdata | T-Driver | ||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | H(P,Q) | MAE | RMSE | H(P,Q) | |||
✓ | 0.097±0.083 | 0.127±0.073 | 0.051±0.013 | 0.041±0.021 | 0.045±0.011 | 0.038±0.014 | ||
✓ | ✓ | 0.060±0.007 | 0.093±0.019 | 0.053±0.005 | 0.042±0.029 | 0.034±0.017 | 0.033±0.011 | |
✓ | ✓ | 0.094±0.007 | 0.137±0.051 | 0.089±0.021 | 0.039±0.014 | 0.051±0.016 | 0.038±0.018 | |
✓ | ✓ | ✓ | 0.054±0.015 | 0.089±0.030 | 0.058±0.012 | 0.042±0.003 | 0.037±0.021 | 0.034±0.011 |
Yellow_tripdata | T-Driver | |||||
---|---|---|---|---|---|---|
MAE | RMSE | H(P,Q) | MAE | RMSE | H(P,Q) | |
0.5 | 0.031 | 0.045 | 0.022 | 0.027 | 0.041 | 0.038 |
1.0 | 0.024 | 0.046 | 0.021 | 0.026 | 0.037 | 0.039 |
2.0 | 0.017 | 0.040 | 0.018 | 0.024 | 0.039 | 0.036 |
4.0 | 0.016 | 0.038 | 0.019 | 0.025 | 0.042 | 0.034 |
Tab. 5 Prediction metrics with different privacy budgets
Yellow_tripdata | T-Driver | |||||
---|---|---|---|---|---|---|
MAE | RMSE | H(P,Q) | MAE | RMSE | H(P,Q) | |
0.5 | 0.031 | 0.045 | 0.022 | 0.027 | 0.041 | 0.038 |
1.0 | 0.024 | 0.046 | 0.021 | 0.026 | 0.037 | 0.039 |
2.0 | 0.017 | 0.040 | 0.018 | 0.024 | 0.039 | 0.036 |
4.0 | 0.016 | 0.038 | 0.019 | 0.025 | 0.042 | 0.034 |
1 | 李德仁,邵振峰,于文博,等.基于时空位置大数据的公共疫情防控服务让城市更智慧[J].武汉大学学报(信息科学版), 2020, 45(4): 475-487. |
LI D R, SHAO Z F, YU W B, et al. Public epidemic prevention and control services based on big data of spatiotemporal location make cities more smart [J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 475-487. | |
2 | PAN X, CAI X R, SONG K, et al. Location recommendation based on mobility graph with individual and group influences [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8409-8420. |
3 | AGARWAL R, HUSSAIN M. Generic framework for privacy preservation in cyber-physical systems [C]// Proceedings of the 2019 International Conference on Advanced Computing and Intelligent Engineering, AISC 1198. Singapore: Springer, 2021: 257-266. |
4 | CHANG V, MOU Y, XU Q A. The ethical issues of location-based services on big data and IoT [C]// Proceedings of the 2020 International Conference on Industrial IoT, Big Data and Supply Chain, SIST 218. Singapore: Springer, 2021: 195-205. |
5 | SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810. |
6 | XIONG L, DING W, HUANG X, et al. CLSTAN: ConvLSTM-based spatiotemporal attention network for traffic flow forecasting [J]. Mathematical Problems in Engineering, 2022, 2022: No.1604727. |
7 | HE R, LIU Y, XIAO Y, et al. Deep spatio-temporal 3D densenet with multiscale ConvLSTM-Resnet network for citywide traffic flow forecasting [J]. Knowledge-Based Systems, 2022, 250: No.109054. |
8 | 夏进,王正群,朱世明.基于时间序列分解的交通流量预测模型[J].计算机应用, 2023, 43(4): 1129-1135. |
XIA J, WANG Z Q, ZHU S M. Traffic flow prediction model based on time series decomposition [J]. Journal of Computer Applications, 2023, 43(4): 1129-1135. | |
9 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. |
10 | 晏燕,丛一鸣, MAHMOOD A,等.基于深度学习的位置大数据统计发布与隐私保护方法[J].通信学报, 2022, 43(1): 203-216. |
YAN Y, CONG Y M, MAHMOOD A, et al. Statistics release and privacy protection method of location big data based on deep learning [J]. Journal on Communications, 2022, 43(1): 203-216. | |
11 | 梁天恺,曾碧,陈光.联邦学习综述:概念、技术、应用与挑战[J].计算机应用, 2022, 42(12): 3651-3662. |
LIANG T K, ZENG B, CHEN G. Federated learning survey: concepts, technologies, applications and challenges [J]. Journal of Computer Applications, 2022, 42(12): 3651-3662. | |
12 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
13 | 肖雄,唐卓,肖斌,等.联邦学习的隐私保护与安全防御研究综述[J].计算机学报, 2023, 46(5): 1019-1044. |
XIAO X, TANG Z, XIAO B, et al. A survey on privacy and security issues in federated learning [J]. Chinese Journal of Computers, 2023, 46(5): 1019-1044. | |
14 | ZHU L, LIU Z, HAN S. Deep leakage from gradients [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 14774-14784. |
15 | WANG Z, PENG C, HE X, et al. Wasserstein distance-based deep leakage from gradients [J]. Entropy, 2023, 25(5): No.810. |
16 | SONG C, RISTENPART T, SHMATIKOV V. Machine learning models that remember too much [C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 587-601. |
17 | YIN H, MALLYA A, VAHDAT A, et al. See through gradients: image batch recovery via gradinversion [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16332-16341. |
18 | LAM M, WEI G Y, BROOKS D, et al. Gradient disaggregation: breaking privacy in federated learning by reconstructing the user participant matrix [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 5959-5968. |
19 | DWORK C. Differential privacy [C]// Proceedings of the 2006 International Colloquium on Automata, Languages, and Programming, LNCS 4052. Berlin: Springer, 2006: 1-12. |
20 | DWORK C. Differential privacy: a survey of results [C]// Proceedings of the 2008 International conference on Theory and Applications of Models of Computation, LNCS 4978. Berlin: Springer, 2008: 1-19. |
21 | ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. |
22 | DING X, CHEN L, ZHOU P, et al. Differentially private deep learning with iterative gradient descent optimization [J]. ACM/IMS Transactions on Data Science, 2021, 2(4): No.34. |
23 | ADNAN M, KALRA S, CRESSWELL J C, et al. Federated learning and differential privacy for medical image analysis [J]. Scientific Reports, 2022, 12: No.1953. |
24 | WU X, ZHANG Y, SHI M, et al. An adaptive federated learning scheme with differential privacy preserving [J]. Future Generation Computer Systems, 2022, 127: 362-372. |
25 | HUANG X, DING Y, JIANG Z L, et al. DP-FL: a novel differentially private federated learning framework for the unbalanced data [J]. World Wide Web, 2020, 23: 2529-2545. |
26 | ZHAO J, MAO K, HUANG C, et al. Utility optimization of federated learning with differential privacy [J]. Discrete Dynamics in Nature and Society, 2021, 2021: No.3344862. |
27 | WANG W, XIE E, LI X, et al. PVT v2: improved baselines with Pyramid Vision Transformer [J]. Computational Visual Media, 2022, 8(3): 415-424. |
28 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
29 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks [EB/OL]. [2023-10-02]. . |
30 | DWORK C, McSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis [J]. Journal of Privacy and Confidentiality, 2016, 7(3): 17-51. |
31 | DWORK C, ROTH A. The algorithmic foundations of differential privacy [J]. Foundations and Trends in Theoretical Computer Science, 2014, 9(3/4): 211-407. |
32 | 段聪颖,陈思光.基于联邦深度学习的皮肤病智能诊断研究[J].生物信息学, 2024, 22(2): 101-108. |
DUAN C Y, CHEN S G. Federated deep learning-based intelligent diagnosis for skin lesion [J]. Chinese Journal of Bioinformatics, 2024, 22(2): 101-108. |
[1] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[2] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[3] | Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network [J]. Journal of Computer Applications, 2025, 45(1): 136-143. |
[4] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[5] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[6] | Shufen ZHANG, Hongyang ZHANG, Zhiqiang REN, Xuebin CHEN. Survey of fairness in federated learning [J]. Journal of Computer Applications, 2025, 45(1): 1-14. |
[7] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[8] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[9] | Zhizheng ZHANG, Xiaojian ZHANG, Junqing WANG, Guanghui FENG. Federated spatial data publication method with differential privacy and secure aggregation [J]. Journal of Computer Applications, 2024, 44(9): 2777-2784. |
[10] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[11] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[12] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[13] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[14] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[15] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||