Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 444-452.DOI: 10.11772/j.issn.1001-9081.2024010064
• Data science and technology • Previous Articles
Received:
2024-01-19
Revised:
2024-03-25
Accepted:
2024-03-25
Online:
2024-05-09
Published:
2025-02-10
Contact:
Handa MA
About author:
WU Yadong, born in 1999, M.S. candidate. His research interests include time series analysis, air quality prediction.
Supported by:
通讯作者:
马汉达
作者简介:
吴亚东(1999—),男,江苏苏州人,硕士研究生,主要研究方向:时间序列分析、空气质量预测。
基金资助:
CLC Number:
Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction[J]. Journal of Computer Applications, 2025, 45(2): 444-452.
马汉达, 吴亚东. 多域时空层次图神经网络的空气质量预测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 444-452.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010064
方向 | 向量 | 方向 | 向量 |
---|---|---|---|
北 | [0,1] | 西南 | [-1,-1] |
东北 | [1,1] | 西 | [-1,0] |
东 | [1,0] | 西北 | [-1,1] |
东南 | [1,-1] | 不稳定 | [0,0] |
南 | [0,-1] |
Tab. 1 Wind direction coding rules
方向 | 向量 | 方向 | 向量 |
---|---|---|---|
北 | [0,1] | 西南 | [-1,-1] |
东北 | [1,1] | 西 | [-1,0] |
东 | [1,0] | 西北 | [-1,1] |
东南 | [1,-1] | 不稳定 | [0,0] |
南 | [0,-1] |
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
GC-DCRNN | MAE | 8.55 | 16.80 | 22.77 | 27.23 |
RMSE | 11.51 | 22.86 | 30.77 | 36.52 | |
GC-LSTM | MAE | 9.05 | 17.05 | 22.76 | 26.97 |
RMSE | 12.08 | 22.94 | 30.54 | 36.09 | |
PM2.5-GNN | MAE | 8.15 | 13.91 | 18.09 | 23.14 |
RMSE | 11.49 | 20.17 | 25.15 | 31.01 | |
HighAir | MAE | 7.12 | 13.68 | 18.72 | 22.15 |
RMSE | 10.89 | 19.50 | 26.05 | 29.59 | |
MSTGNN | MAE | 7.14 | 12.93 | 17.46 | 21.75 |
RMSE | 10.98 | 18.23 | 24.27 | 28.49 | |
A3T-GCN | MAE | 6.65 | 11.69 | 16.90 | 20.47 |
RMSE | 9.97 | 17.61 | 22.87 | 27.94 | |
M2 | MAE | 6.14 | 12.04 | 16.65 | 20.18 |
RMSE | 9.90 | 17.93 | 22.81 | 27.72 | |
本文模型 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 |
Tab. 2 Comparison of experimental models(Yangtze River Delta dataset)
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
GC-DCRNN | MAE | 8.55 | 16.80 | 22.77 | 27.23 |
RMSE | 11.51 | 22.86 | 30.77 | 36.52 | |
GC-LSTM | MAE | 9.05 | 17.05 | 22.76 | 26.97 |
RMSE | 12.08 | 22.94 | 30.54 | 36.09 | |
PM2.5-GNN | MAE | 8.15 | 13.91 | 18.09 | 23.14 |
RMSE | 11.49 | 20.17 | 25.15 | 31.01 | |
HighAir | MAE | 7.12 | 13.68 | 18.72 | 22.15 |
RMSE | 10.89 | 19.50 | 26.05 | 29.59 | |
MSTGNN | MAE | 7.14 | 12.93 | 17.46 | 21.75 |
RMSE | 10.98 | 18.23 | 24.27 | 28.49 | |
A3T-GCN | MAE | 6.65 | 11.69 | 16.90 | 20.47 |
RMSE | 9.97 | 17.61 | 22.87 | 27.94 | |
M2 | MAE | 6.14 | 12.04 | 16.65 | 20.18 |
RMSE | 9.90 | 17.93 | 22.81 | 27.72 | |
本文模型 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 |
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
本文模型 | MAE | 6.26 | 10.57 | 14.30 | 18.64 |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | |
w/o-F | MAE | 6.36 | 11.86 | 17.98 | 24.28 |
RMSE | 16.03 | 28.05 | 38.91 | 49.35 | |
w/o-T | MAE | 6.40 | 11.41 | 16.22 | 20.96 |
RMSE | 16.11 | 26.10 | 35.93 | 44.09 | |
w/o-G | MAE | 7.89 | 13.79 | 18.02 | 22.61 |
RMSE | 18.22 | 28.92 | 36.09 | 43.96 |
Tab. 3 Comparison of variant models (Urban-Air dataset)
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
本文模型 | MAE | 6.26 | 10.57 | 14.30 | 18.64 |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | |
w/o-F | MAE | 6.36 | 11.86 | 17.98 | 24.28 |
RMSE | 16.03 | 28.05 | 38.91 | 49.35 | |
w/o-T | MAE | 6.40 | 11.41 | 16.22 | 20.96 |
RMSE | 16.11 | 26.10 | 35.93 | 44.09 | |
w/o-G | MAE | 7.89 | 13.79 | 18.02 | 22.61 |
RMSE | 18.22 | 28.92 | 36.09 | 43.96 |
数据集 | k | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|---|
Urban-Air | 2 | MAE | 5.88 | 10.71 | 14.94 | 19.06 |
RMSE | 16.94 | 26.81 | 34.42 | 40.98 | ||
3 | MAE | 6.68 | 11.84 | 16.57 | 21.44 | |
RMSE | 16.82 | 28.26 | 37.22 | 43.96 | ||
5 | MAE | 6.26 | 10.57 | 14.30 | 18.64 | |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | ||
7 | MAE | 6.56 | 11.85 | 16.39 | 21.15 | |
RMSE | 17.34 | 27.78 | 35.96 | 40.50 | ||
12 | MAE | 7.08 | 12.59 | 16.67 | 20.82 | |
RMSE | 17.84 | 28.79 | 36.23 | 43.38 | ||
长三角 城市群 | 2 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 | ||
3 | MAE | 8.89 | 13.52 | 16.81 | 19.77 | |
RMSE | 14.94 | 19.49 | 22.98 | 26.33 | ||
5 | MAE | 6.14 | 12.04 | 16.65 | 20.18 | |
RMSE | 10.19 | 17.58 | 23.18 | 27.72 | ||
7 | MAE | 9.87 | 15.91 | 20.88 | 25.75 | |
RMSE | 17.32 | 23.85 | 29.62 | 35.95 | ||
12 | MAE | 9.69 | 12.94 | 15.81 | 18.77 | |
RMSE | 15.32 | 18.63 | 21.80 | 25.20 |
Tab. 4 Prediction performance under different periods
数据集 | k | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|---|
Urban-Air | 2 | MAE | 5.88 | 10.71 | 14.94 | 19.06 |
RMSE | 16.94 | 26.81 | 34.42 | 40.98 | ||
3 | MAE | 6.68 | 11.84 | 16.57 | 21.44 | |
RMSE | 16.82 | 28.26 | 37.22 | 43.96 | ||
5 | MAE | 6.26 | 10.57 | 14.30 | 18.64 | |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | ||
7 | MAE | 6.56 | 11.85 | 16.39 | 21.15 | |
RMSE | 17.34 | 27.78 | 35.96 | 40.50 | ||
12 | MAE | 7.08 | 12.59 | 16.67 | 20.82 | |
RMSE | 17.84 | 28.79 | 36.23 | 43.38 | ||
长三角 城市群 | 2 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 | ||
3 | MAE | 8.89 | 13.52 | 16.81 | 19.77 | |
RMSE | 14.94 | 19.49 | 22.98 | 26.33 | ||
5 | MAE | 6.14 | 12.04 | 16.65 | 20.18 | |
RMSE | 10.19 | 17.58 | 23.18 | 27.72 | ||
7 | MAE | 9.87 | 15.91 | 20.88 | 25.75 | |
RMSE | 17.32 | 23.85 | 29.62 | 35.95 | ||
12 | MAE | 9.69 | 12.94 | 15.81 | 18.77 | |
RMSE | 15.32 | 18.63 | 21.80 | 25.20 |
1 | HAN J, LIU H, XIONG H, et al. Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 5230-5243. |
2 | 石乾宏,杨燕,江永全,等. 面向空气质量预测的多粒度突变拟合网络[J]. 计算机应用, 2024, 44(8):2643-2650. |
SHI Q H, YANG Y, JIANG Y Q, et al. Multi-granularity abrupt change fitting network for air quality prediction[J]. Journal of Computer Applications, 2024, 44(8):2643-2650. | |
3 | WEN C, LIU S, YAO X, et al. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction[J]. Science of the Total Environment, 2019, 654: 1091-1099. |
4 | XU J, CHEN L, LV M, et al. HighAir: a hierarchical graph neural network based air quality forecasting method[EB/OL]. [2023-10-19].. |
5 | KIM T Y, CHO S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81. |
6 | ZHANG B, RONG Y, YONG R, et al. Deep learning for air pollutant concentration prediction: a review[J]. Atmospheric Environment, 2022, 290: No.119347. |
7 | QI Y, LI Q, KARIMIAN H, et al. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory[J]. Science of the Total Environment, 2019, 664: 1-10. |
8 | 哈尔滨工程大学. 基于元学习和图注意力时空神经网络的空气质量预测方法: 202011155619.1[P]. 2021-01-29. |
Harbin Engineering University. Air quality prediction method based on meta learning and graph attention spatiotemporal neural network: 202011155619.1[P]. 2021-01-29. | |
9 | SUI S, HAN Q. Multi-view multi-task spatiotemporal graph convolutional network for air quality prediction[J]. Science of the Total Environment, 2023, 893: No.164699. |
10 | YAN R, LIAO J, YANG J, et al. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering[J]. Expert Systems with Applications, 2021, 169: No.114513. |
11 | WANG J, SONG G. A deep spatial-temporal ensemble model for air quality prediction[J]. Neurocomputing, 2018, 314: 198-206. |
12 | WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[EB/OL]. [2023-10-19].. |
13 | LIU H, YAN G, DUAN Z, et al. Intelligent modeling strategies for forecasting air quality time series: a review[J]. Applied Soft Computing, 2021, 102: No.106957. |
14 | KITAGAWA Y K L, PEDRUZZI R, GALVÃO E S, et al. Source apportionment modelling of PM2.5 using CMAQ-ISAM over a tropical coastal-urban area[J]. Atmospheric Pollution Research, 2021, 12(12): No.101250. |
15 | LI Y, GUO J E, SUN S, et al. Air quality forecasting with artificial intelligence techniques: a scientometric and content analysis[J]. Environmental Modelling and Software, 2022, 149: No.105329. |
16 | ZHANG L, LIN J, QIU R, et al. Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model[J]. Ecological Indicators, 2018, 95(Pt 1): 702-710. |
17 | MA Z, HU X, HUANG L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science and Technology, 2014, 48(13): 7436-7444. |
18 | 任才溶,谢刚. 基于随机森林和气象参数的PM2.5浓度等级预测[J]. 计算机工程与应用, 2019, 55(2): 213-220. |
REN C R, XIE G. Prediction of PM2.5 concentration level based on random forest and meteorological parameters[J]. Computer Engineering and Applications, 2019, 55(2): 213-220. | |
19 | HE Z, LIU P, ZHAO X, et al. Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019: a study based on multiple linear regression and WRF-Chem[J]. Science of the Total Environment, 2022, 807(Pt 2): No.150792. |
20 | PAK U, MA J, RYU U, et al. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: a case study of Beijing, China[J]. Science of the Total Environment, 2020, 699: No.133561. |
21 | ZHU J, DENG F, ZHAO J, et al. Attention-based Parallel Networks (APNet) for PM2.5 spatiotemporal prediction[J]. Science of the Total Environment, 2021, 769: No.145082. |
22 | ZHANG B, ZOU G, QIN D, et al. RCL-Learning: ResNet and convolutional long short-term memory-based spatio-temporal air pollutant concentration prediction model[J]. Expert Systems with Applications, 2022, 207: No.118017. |
23 | ZHANG J, WANG Z, LIU Y, et al. Temporal attention with domain-specific graph regularization for PM2.5 forecasting[C]// Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering. Piscataway: IEEE, 2020: 510-517. |
24 | XU J, WANG S, YING N, et al. Dynamic graph neural network with adaptive edge attributes for air quality prediction: a case study in China[J]. Heliyon, 2023, 9(7): No.e17746. |
25 | LIN Y, MAGO N, GAO Y, et al. Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 359-368. |
26 | WANG S, LI Y, ZHANG J, et al. PM2.5-GNN: a domain knowledge enhanced graph neural network for PM2.5 forecasting[C]// Proceedings of the 28th International Conference on Advances in Geographic Information Systems. New York: ACM, 2020:163-166. |
27 | 廖海斌,袁理,龚颢巍. 基于多尺度时空图神经网络的污染物浓度预测[J]. 控制与决策, 2024, 39(4):1396-1402. |
LIAO H B, YUAN L, GONG H W. Pollutant concentration forecast based on multiscale spatiotemporal graph neural network[J]. Control and Decision, 2024, 39(4):1396-1402. | |
28 | ISKANDARYAN D, RAMOS F, TRILLES S. Graph neural network for air quality prediction: a case study in Madrid[J]. IEEE Access, 2023, 11: 2729-2742. |
29 | CHEN J, YUAN C, DONG S, et al. A novel spatiotemporal multigraph convolutional network for air pollution prediction[J]. Applied Intelligence, 2023, 53(15): 18319-18332. |
[1] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[2] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[3] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[4] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[5] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[6] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[7] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[8] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[9] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[10] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[11] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
[12] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
[13] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
[14] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[15] | Zifang XIA, Yaxin YU, Ziteng WANG, Jiaqi QIAO. Explainable recommendation mechanism by fusion collaborative knowledge graph and counterfactual inference [J]. Journal of Computer Applications, 2023, 43(7): 2001-2009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||