Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 421-427.DOI: 10.11772/j.issn.1001-9081.2024010145
• Artificial intelligence • Previous Articles
Received:
2024-02-07
Revised:
2024-04-03
Accepted:
2024-04-07
Online:
2024-05-09
Published:
2025-02-10
Contact:
Wei TAN
About author:
CAI Qijian, born in 1998, M. S. candidate. His research interests include data mining, recommender systems.
Supported by:
通讯作者:
谭伟
作者简介:
蔡启健(1998—),男,广东湛江人,硕士研究生,CCF会员,主要研究方向:数据挖掘、推荐系统;
基金资助:
CLC Number:
Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm[J]. Journal of Computer Applications, 2025, 45(2): 421-427.
蔡启健, 谭伟. 语义图增强的多模态推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 421-427.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010145
数据集 | 用户数 | 项目数 | 交互数 | 稀疏度/% |
---|---|---|---|---|
Baby | 19 445 | 7 050 | 160 792 | 99.88 |
Sports | 35 598 | 18 357 | 296 337 | 99.95 |
Clothing | 39 387 | 23 033 | 278 677 | 99.97 |
Tab. 1 Statistics of datasets
数据集 | 用户数 | 项目数 | 交互数 | 稀疏度/% |
---|---|---|---|---|
Baby | 19 445 | 7 050 | 160 792 | 99.88 |
Sports | 35 598 | 18 357 | 296 337 | 99.95 |
Clothing | 39 387 | 23 033 | 278 677 | 99.97 |
算法 | Baby | Sports | Clothing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@10 | R@20 | N@10 | N@20 | R@10 | R@20 | N@10 | N@20 | R@10 | R@20 | N@10 | N@20 | |
LightGCN | 0.047 9 | 0.075 4 | 0.025 7 | 0.032 8 | 0.056 9 | 0.086 4 | 0.031 1 | 0.038 7 | 0.036 1 | 0.054 4 | 0.019 7 | 0.024 3 |
VBPR | 0.042 3 | 0.066 3 | 0.022 3 | 0.028 4 | 0.055 8 | 0.085 6 | 0.030 7 | 0.038 4 | 0.028 1 | 0.041 5 | 0.015 8 | 0.019 2 |
MMGCN | 0.041 2 | 0.066 4 | 0.021 9 | 0.028 4 | 0.039 0 | 0.062 9 | 0.020 4 | 0.026 6 | 0.022 4 | 0.036 9 | 0.011 6 | 0.015 3 |
GRCN | 0.053 2 | 0.082 4 | 0.028 2 | 0.035 8 | 0.059 9 | 0.091 9 | 0.033 0 | 0.041 3 | 0.042 1 | 0.065 7 | 0.022 4 | 0.028 4 |
DualGNN | 0.051 3 | 0.080 3 | 0.027 8 | 0.035 2 | 0.058 8 | 0.089 9 | 0.032 4 | 0.040 4 | 0.045 2 | 0.067 5 | 0.024 2 | 0.029 8 |
LATTICE | 0.054 7 | 0.085 0 | 0.029 2 | 0.037 0 | 0.062 0 | 0.095 3 | 0.033 5 | 0.042 1 | 0.049 2 | 0.073 3 | 0.026 8 | 0.033 0 |
FREEDOM | ||||||||||||
SGEMR | 0.066 9 | 0.103 2 | 0.036 0 | 0.045 2 | 0.079 8 | 0.118 2 | 0.043 4 | 0.053 2 | 0.066 1 | 0.096 8 | 0.036 7 | 0.044 6 |
Tab. 2 Performance comparison of SGEMR and baseline algorithms
算法 | Baby | Sports | Clothing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@10 | R@20 | N@10 | N@20 | R@10 | R@20 | N@10 | N@20 | R@10 | R@20 | N@10 | N@20 | |
LightGCN | 0.047 9 | 0.075 4 | 0.025 7 | 0.032 8 | 0.056 9 | 0.086 4 | 0.031 1 | 0.038 7 | 0.036 1 | 0.054 4 | 0.019 7 | 0.024 3 |
VBPR | 0.042 3 | 0.066 3 | 0.022 3 | 0.028 4 | 0.055 8 | 0.085 6 | 0.030 7 | 0.038 4 | 0.028 1 | 0.041 5 | 0.015 8 | 0.019 2 |
MMGCN | 0.041 2 | 0.066 4 | 0.021 9 | 0.028 4 | 0.039 0 | 0.062 9 | 0.020 4 | 0.026 6 | 0.022 4 | 0.036 9 | 0.011 6 | 0.015 3 |
GRCN | 0.053 2 | 0.082 4 | 0.028 2 | 0.035 8 | 0.059 9 | 0.091 9 | 0.033 0 | 0.041 3 | 0.042 1 | 0.065 7 | 0.022 4 | 0.028 4 |
DualGNN | 0.051 3 | 0.080 3 | 0.027 8 | 0.035 2 | 0.058 8 | 0.089 9 | 0.032 4 | 0.040 4 | 0.045 2 | 0.067 5 | 0.024 2 | 0.029 8 |
LATTICE | 0.054 7 | 0.085 0 | 0.029 2 | 0.037 0 | 0.062 0 | 0.095 3 | 0.033 5 | 0.042 1 | 0.049 2 | 0.073 3 | 0.026 8 | 0.033 0 |
FREEDOM | ||||||||||||
SGEMR | 0.066 9 | 0.103 2 | 0.036 0 | 0.045 2 | 0.079 8 | 0.118 2 | 0.043 4 | 0.053 2 | 0.066 1 | 0.096 8 | 0.036 7 | 0.044 6 |
1 | HE R, McAULEY J. VBPR: visual Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 144-150. |
2 | CHEN J, ZHANG H, HE X, et al. Attentive collaborative filtering: multimedia recommendation with item-and component-level attention[C]// Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM, 2017: 335-344. |
3 | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
4 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
5 | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
6 | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. |
7 | DELDJOO Y, SCHEDL M, CREMONESI P, et al. Recommender systems leveraging multimedia content[J]. ACM Computing Surveys, 2021, 53(5): No.106. |
8 | WEI Y, WANG X, NIE L, et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1437-1445. |
9 | TAO Z, WEI Y, WANG X, et al. MGAT: multimodal graph attention network for recommendation[J]. Information Processing and Management, 2020, 57(5): No.102277. |
10 | WANG Q, WEI Y, YIN J, et al. DualGNN: dual graph neural network for multimedia recommendation[J]. IEEE Transactions on Multimedia, 2023, 25: 1074-1084. |
11 | ZHANG J, ZHU Y, LIU Q, et al. Mining latent structures for multimedia recommendation[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 3872-3880. |
12 | ZHOU X, SHEN Z. A tale of two graphs: freezing and denoising graph structures for multimodal recommendation[C]// Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 935-943. |
13 | ZHOU H, ZHOU X, ZENG Z, et al. A comprehensive survey on multimodal recommender systems: taxonomy, evaluation, and future directions[EB/OL]. [2024-02-09].. |
14 | LIU F, CHENG Z, SUN C, et al. User diverse preference modeling by multimodal attentive metric learning[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1526-1534. |
15 | LIU S, CHEN Z, LIU H, et al. User-video co-attention network for personalized micro-video recommendation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3020-3026. |
16 | WEI Y, WANG X, NIE L, et al. Graph-refined convolutional network for multimedia recommendation with implicit feedback[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3541-3549. |
17 | MU Z, ZHUANG Y, TAN J, et al. Learning hybrid behavior patterns for multimedia recommendation[C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 376-384. |
18 | ZHU Y, XU W, ZHANG J, et al. A survey on graph structure learning: progress and opportunities[EB/OL]. [2024-03-04].. |
19 | CHEN Y, WU L, ZAKI M J. Iterative deep graph learning for graph neural networks: better and robust node embeddings[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 19314-19326. |
20 | ZHAO J, WANG X, SHI C, et al. Heterogeneous graph structure learning for graph neural networks[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4697-4705. |
21 | SAHA A, MENDEZ O, RUSSELL C, et al. Learning adaptive neighborhoods for graph neural networks[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 22484-22493. |
22 | LUO D, CHENG W, YU W, et al. Learning to drop: robust graph neural network via topological denoising[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 779-787. |
23 | KREUZER D, BEAINI D, HAMILTON W L, et al. Rethinking graph transformers with spectral attention[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 21618-21629. |
24 | ZHOU H, ZHOU X, ZHANG L, et al. Enhancing dyadic relations with homogeneous graphs for multimodal recommendation[C]// Proceedings of the 26th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2023: 3123-3130. |
25 | WANG X, JI H, SHI C, et al. Heterogeneous graph attention network[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032. |
[1] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[2] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[3] | Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging [J]. Journal of Computer Applications, 2025, 45(1): 204-213. |
[4] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. |
[5] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. |
[6] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[7] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. |
[8] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[9] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[10] | Xianglan WU, Yang XIAO, Mengying LIU, Mingming LIU. Text-to-SQL model based on semantic enhanced schema linking [J]. Journal of Computer Applications, 2024, 44(9): 2689-2695. |
[11] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[12] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[13] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[14] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[15] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||