Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 904-910.DOI: 10.11772/j.issn.1001-9081.2024030364
• Cyber security • Previous Articles Next Articles
Yu WANG, Xianjin FANG(), Gaoming YANG, Yifeng DING, Xinlu YANG
Received:
2024-04-02
Revised:
2024-06-25
Accepted:
2024-06-26
Online:
2024-08-13
Published:
2025-03-10
Contact:
Xianjin FANG
About author:
WANG Yu, born in 1999, M. S. candidate. Her research interests include active defense, fake face detection.Supported by:
通讯作者:
方贤进
作者简介:
王瑜(1999—),女,安徽宿州人,硕士研究生,主要研究方向:主动防御、伪造人脸检测基金资助:
CLC Number:
Yu WANG, Xianjin FANG, Gaoming YANG, Yifeng DING, Xinlu YANG. Active defense against face forgery based on attention mask and feature extraction[J]. Journal of Computer Applications, 2025, 45(3): 904-910.
王瑜, 方贤进, 杨高明, 丁一峰, 杨新露. 基于注意力掩码与特征提取的人脸伪造主动防御[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 904-910.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030364
数据集 | 模型 | Success/% | 文献[ | 本文方法 | ||||
---|---|---|---|---|---|---|---|---|
L2 | SSIM | PSNR/dB | L2 | SSIM | PSNR/dB | |||
CelebA | StarGAN | 99.80 | 0.122 0 | 0.463 2 | 20.480 9 | 0.281 0 | 0.527 0 | 19.756 2 |
GANimation | 95.49 | 0.052 6 | 0.742 6 | 27.636 9 | 0.124 7 | 0.520 9 | 20.213 3 | |
RaFD | StarGAN | 99.63 | 0.057 9 | 0.628 8 | 24.180 1 | 0.379 6 | 0.531 7 | 21.755 1 |
GANimation | 96.01 | 0.095 6 | 0.649 5 | 30.803 6 | 0.387 4 | 0.486 7 | 18.498 9 |
Tab. 1 Comparison experiment results of active defense performance
数据集 | 模型 | Success/% | 文献[ | 本文方法 | ||||
---|---|---|---|---|---|---|---|---|
L2 | SSIM | PSNR/dB | L2 | SSIM | PSNR/dB | |||
CelebA | StarGAN | 99.80 | 0.122 0 | 0.463 2 | 20.480 9 | 0.281 0 | 0.527 0 | 19.756 2 |
GANimation | 95.49 | 0.052 6 | 0.742 6 | 27.636 9 | 0.124 7 | 0.520 9 | 20.213 3 | |
RaFD | StarGAN | 99.63 | 0.057 9 | 0.628 8 | 24.180 1 | 0.379 6 | 0.531 7 | 21.755 1 |
GANimation | 96.01 | 0.095 6 | 0.649 5 | 30.803 6 | 0.387 4 | 0.486 7 | 18.498 9 |
数据集 | 文献[ | 本文方法 | ||||
---|---|---|---|---|---|---|
L2 | SSIM | PSNR/dB | L2 | SSIM | PSNR/dB | |
CelebA | 0.149 9 | 0.739 1 | 29.275 0 | 0.020 3 | 0.967 2 | 39.462 0 |
RaFD | 0.094 4 | 0.653 7 | 25.773 1 | 0.038 6 | 0.827 8 | 35.090 0 |
Tab. 2 Comparison experiment results of visual quality of adversarial images
数据集 | 文献[ | 本文方法 | ||||
---|---|---|---|---|---|---|
L2 | SSIM | PSNR/dB | L2 | SSIM | PSNR/dB | |
CelebA | 0.149 9 | 0.739 1 | 29.275 0 | 0.020 3 | 0.967 2 | 39.462 0 |
RaFD | 0.094 4 | 0.653 7 | 25.773 1 | 0.038 6 | 0.827 8 | 35.090 0 |
模型 | 本文方法(FGSM) | 本文方法(I-FGSM) | 本文方法(PGD) | |||
---|---|---|---|---|---|---|
Success/% | L2 | Success/% | L2 | Success/% | L2 | |
StarGAN | 98.17 | 0.580 2 | 98.86 | 1.363 6 | 99.07 | 1.064 9 |
GANimation | 93.24 | 0.094 2 | 95.08 | 0.240 6 | 96.98 | 0.207 3 |
Tab. 3 Comparison of different defense methods
模型 | 本文方法(FGSM) | 本文方法(I-FGSM) | 本文方法(PGD) | |||
---|---|---|---|---|---|---|
Success/% | L2 | Success/% | L2 | Success/% | L2 | |
StarGAN | 98.17 | 0.580 2 | 98.86 | 1.363 6 | 99.07 | 1.064 9 |
GANimation | 93.24 | 0.094 2 | 95.08 | 0.240 6 | 96.98 | 0.207 3 |
baseline | Attention Mask | VGG16 | SSIM | PSNR/dB |
---|---|---|---|---|
√ | 0.740 8 | 30.551 4 | ||
√ | √ | 0.827 4 | 34.799 0 | |
√ | √ | 0.905 3 | 38.247 2 | |
√ | √ | √ | 0.967 2 | 39.446 1 |
Tab. 4 Ablation experimental results
baseline | Attention Mask | VGG16 | SSIM | PSNR/dB |
---|---|---|---|---|
√ | 0.740 8 | 30.551 4 | ||
√ | √ | 0.827 4 | 34.799 0 | |
√ | √ | 0.905 3 | 38.247 2 | |
√ | √ | √ | 0.967 2 | 39.446 1 |
1 | 周文柏,张卫明,俞能海,等. 人脸视频深度伪造与防御技术综述[J]. 信号处理, 2021, 37(12): 2338-2355. |
ZHOU W B, ZHANG W M, YU N H, et al. An overview of Deepfake forgery and defense techniques [J]. Journal of Signal Processing, 2021, 37(12):2338-2355. | |
2 | 蔺琛皓,沈超,邓静怡,等. 虚假数字人脸内容生成与检测技术[J]. 计算机学报, 2023, 46(3): 469-498. |
LIN C H, SHEN C, DENG J Y, et al. Digitally forged face content creation and detection [J]. Chinese Journal of Computers, 2023, 46(3): 469-498. | |
3 | JUNG T, KIM S, KIM K. DeepVision: Deepfakes detection using human eye blinking pattern [J]. IEEE Access, 2020, 8: 83144-83154. |
4 | MIRSKY Y, LEE W. The creation and detection of deepfakes: a survey [J]. ACM Computing Surveys, 2022, 54(1): No.7. |
5 | FU X, LI S, YUAN Y, et al. Forgery face detection via adaptive learning from multiple experts [J]. Neurocomputing, 2023, 527: 110-118. |
6 | PUMAROLA A, AGUDO A, MARTINEZ A M, et al. GANimation: anatomically-aware facial animation from a single image [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 835-851. |
7 | CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask Transformer for universal image segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1280-1289. |
8 | NIE X, DUAN M, DING H, et al. Attention Mask R-CNN for ship detection and segmentation from remote sensing images [J]. IEEE Access, 2020, 8: 9325-9334. |
9 | DOSOVITSKIY A, BROX T. Generating images with perceptual similarity metrics based on deep networks [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 658-666. |
10 | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2414-2423. |
11 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
12 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. |
13 | LIU S, DENG W. Very deep convolutional neural network based image classification using small training sample size [C]// Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE, 2015: 730-734. |
14 | LUAN F, PARIS S, SHECHTMAN E, et al. Deep photo style transfer [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6997-7005. |
15 | SITAULA C, HOSSAIN M B. Attention-based VGG16 model for COVID-19 chest X-ray image classification [J]. Applied Intelligence, 2021, 51: 2850-2863. |
16 | TAMMINA S. Transfer learning using VGG16 with deep convolutional neural network for classifying images [J]. International Journal of Scientific and Research Publications, 2019, 9(10): 143-150. |
17 | FANG Z, YANG Y, LIN J, et al. Adversarial attacks for multi target image translation networks [C]// Proceedings of the 2020 IEEE International Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2020: 179-184. |
18 | HUANG H, WANG Y, CHEN Z, et al. CMUA-Watermark: a cross-model universal adversarial watermark for combating deepfakes [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 989-997. |
19 | QIU H, DU Y, LU T. The framework of cross-domain and model adversarial attack against deepfake [J]. Future Internet, 2022, 14(2): No.46. |
20 | RUIZ N, BARGAL S A, SCLAROFF S. Disrupting deepfakes: adversarial attacks against conditional image translation networks and facial manipulation systems [C]// Proceedings of the 2020 European Conference on Computer Vision Workshops, LNCS 12538. Cham: Springer, 2020: 236-251. |
21 | WANG X, HUANG J, MA S, et al. DeepFake Disrupter: the detector of deepfake is my friend [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14900-14909. |
22 | YEH C Y, CHEN H W, TSAI S L, et al. Disrupting image-translation-based DeepFake algorithms with adversarial attacks[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision Workshops. Piscataway: IEEE, 2020: 53-62. |
23 | CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8789-8797. |
24 | HUANG Q, ZHANG J, ZHOU W, et al. Initiative defense against facial manipulation [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 1619-1627. |
25 | SHAHRIYAR S A, WRIGHT M. Evaluating robustness of sequence-based deepfake detector models by adversarial perturbation [C]// Proceedings of the 1st Workshop on Security Implications of Deepfakes and Cheapfakes. New York: ACM, 2022: 13-18. |
26 | ZHU Y, CHEN Y, LI X, et al. Information-containing adversarial perturbation for combating facial manipulation systems [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2046-2059. |
[1] | Huahua WANG, Zijian FAN, Ze LIU. Image adversarial example generation method based on multi-space probability enhancement [J]. Journal of Computer Applications, 2025, 45(3): 883-890. |
[2] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
[3] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[4] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[5] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[6] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[7] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[8] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[9] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[10] | Jinfu WU, Yi LIU. Fast adversarial training method based on random noise and adaptive step size [J]. Journal of Computer Applications, 2024, 44(6): 1807-1815. |
[11] | Zhihao WU, Ziqiu CHI, Ting XIAO, Zhe WANG. Meta-learning adaption for few-shot text-to-speech [J]. Journal of Computer Applications, 2024, 44(5): 1629-1635. |
[12] | Yu ZHANG, Yan CHANG, Shibin ZHANG. Adversarial example detection algorithm based on quantum local intrinsic dimensionality [J]. Journal of Computer Applications, 2024, 44(2): 490-495. |
[13] | Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. |
[14] | Wenjie YAN, Dongyue DANG. Broad quantum state tomography model based on adaptive feature extraction [J]. Journal of Computer Applications, 2024, 44(12): 3861-3866. |
[15] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||