Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (12): 3861-3866.DOI: 10.11772/j.issn.1001-9081.2023121725
• Advanced computing • Previous Articles Next Articles
Received:
2023-12-15
Revised:
2024-02-17
Accepted:
2024-02-27
Online:
2024-03-11
Published:
2024-12-10
Contact:
Wenjie YAN
About author:
DANG Dongyue, born in 1999, M. S. candidate. Her research interests include quantum machine learning.
Supported by:
通讯作者:
闫文杰
作者简介:
党东月(1999—),女,河北保定人,硕士研究生,主要研究方向:量子机器学习。
基金资助:
CLC Number:
Wenjie YAN, Dongyue DANG. Broad quantum state tomography model based on adaptive feature extraction[J]. Journal of Computer Applications, 2024, 44(12): 3861-3866.
闫文杰, 党东月. 基于特征自适应提取的宽度量子态层析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3861-3866.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121725
变量 | 含义 | 备注 |
---|---|---|
量子密度矩阵 | 矩阵 | |
量子态 | 矢量 | |
水平极化状态 | 矢量 | |
垂直极化状态 | 矢量 | |
酉矩阵 | 矩阵 | |
单位矩阵 | 矩阵 | |
Cholesky分解所得下三角矩阵 | 矩阵 | |
量子态重构参数 | 矢量 | |
测量算子 | 矩阵 | |
泡利算子 | 矩阵 | |
测量数据 | 矢量 | |
输入数据 | 矩阵 | |
输出数据 | 矩阵 | |
p组映射特征节点 | 矩阵 | |
q组增强节点 | 矩阵 | |
输出权重矩阵 | 矩阵 | |
BLS模型总输入 | 矩阵 |
Tab. 1 Explanation of relevant mathematical symbols
变量 | 含义 | 备注 |
---|---|---|
量子密度矩阵 | 矩阵 | |
量子态 | 矢量 | |
水平极化状态 | 矢量 | |
垂直极化状态 | 矢量 | |
酉矩阵 | 矩阵 | |
单位矩阵 | 矩阵 | |
Cholesky分解所得下三角矩阵 | 矩阵 | |
量子态重构参数 | 矢量 | |
测量算子 | 矩阵 | |
泡利算子 | 矩阵 | |
测量数据 | 矢量 | |
输入数据 | 矩阵 | |
输出数据 | 矩阵 | |
p组映射特征节点 | 矩阵 | |
q组增强节点 | 矩阵 | |
输出权重矩阵 | 矩阵 | |
BLS模型总输入 | 矩阵 |
量子数据 | 模型 | Feature_layer | Node | Epoch | Batch | Learner | Learning_rate |
---|---|---|---|---|---|---|---|
2量子比特 | AFE_BQST | 36-36-36 | 108-500 | 10 | 32 | Adam | 0.001 0 |
BQST | 108-500 | ||||||
D_QST | 50 | 32 | Adagrad | 0.000 5 | |||
C_QST | 50 | 4 | Adagrad | 0.008 0 | |||
U_QST | 50 | 4 | Adagrad | 0.001 0 | |||
4量子比特 | AFE_BQST | 800-400-200 | 1 400-800 | 10 | 32 | Adam | 0.001 0 |
BQST | 1 400-800 | ||||||
D_QST | 50 | 32 | Adagrad | 0.000 6 | |||
C_QST | 50 | 4 | Adagrad | 0.006 0 | |||
U_QST | 50 | 4 | Adagrad | 0.001 0 |
Tab. 2 Relevant parameters of model required for experiments
量子数据 | 模型 | Feature_layer | Node | Epoch | Batch | Learner | Learning_rate |
---|---|---|---|---|---|---|---|
2量子比特 | AFE_BQST | 36-36-36 | 108-500 | 10 | 32 | Adam | 0.001 0 |
BQST | 108-500 | ||||||
D_QST | 50 | 32 | Adagrad | 0.000 5 | |||
C_QST | 50 | 4 | Adagrad | 0.008 0 | |||
U_QST | 50 | 4 | Adagrad | 0.001 0 | |||
4量子比特 | AFE_BQST | 800-400-200 | 1 400-800 | 10 | 32 | Adam | 0.001 0 |
BQST | 1 400-800 | ||||||
D_QST | 50 | 32 | Adagrad | 0.000 6 | |||
C_QST | 50 | 4 | Adagrad | 0.006 0 | |||
U_QST | 50 | 4 | Adagrad | 0.001 0 |
量子数据/qubit | 数据样本数 | 模型 | Avr_F/% | 运行时间/s | 量子数据/qubit | 数据样本数 | 模型 | Avr_F/% | 运行时间/s |
---|---|---|---|---|---|---|---|---|---|
2 | 200 | D_QST | 92.827 | 18.825 | 4 | 800 | D_QST | 94.762 | 171.531 |
C_QST | 92.237 | 31.592 | C_QST | 88.498 | 166.740 | ||||
U_QST | 94.841 | 52.555 | U_QST | 85.507 | 478.890 | ||||
BQST | 96.576 | 1.076 | BQST | 95.921 | 5.237 | ||||
AFE_BQST | 96.621 | 1.465 | AFE_BQST | 94.349 | 7.554 | ||||
400 | D_QST | 95.914 | 37.658 | 1 000 | D_QST | 95.281 | 232.766 | ||
C_QST | 94.580 | 63.128 | C_QST | 90.761 | 213.430 | ||||
U_QST | 96.830 | 106.193 | U_QST | 88.133 | 645.320 | ||||
BQST | 92.539 | 1.480 | BQST | 96.476 | 6.134 | ||||
AFE_BQST | 97.240 | 2.097 | AFE_BQST | 94.776 | 8.593 | ||||
1 000 | D_QST | 97.752 | 94.290 | 6 000 | D_QST | 98.660 | 1 495.239 | ||
C_QST | 97.797 | 155.443 | C_QST | 96.378 | 1 263.060 | ||||
U_QST | 98.609 | 256.514 | U_QST | 98.237 | 4 155.660 | ||||
BQST | 97.749 | 2.679 | BQST | 94.424 | 20.681 | ||||
AFE_BQST | 97.911 | 4.217 | AFE_BQST | 99.119 | 36.396 | ||||
2 000 | D_QST | 98.276 | 188.897 | 8 000 | D_QST | 98.989 | 1 585.457 | ||
C_QST | 98.709 | 312.258 | C_QST | 96.768 | 1 662.183 | ||||
U_QST | 99.208 | 554.446 | U_QST | 98.704 | 5 560.150 | ||||
BQST | 98.842 | 4.785 | BQST | 97.632 | 27.318 | ||||
AFE_BQST | 98.089 | 8.359 | AFE_BQST | 99.233 | 47.251 | ||||
4 000 | D_QST | 99.208 | 379.409 | 10 000 | D_QST | 99.162 | 1 763.861 | ||
C_QST | 99.095 | 629.247 | C_QST | 96.925 | 2 056.470 | ||||
U_QST | 99.457 | 1 099.216 | U_QST | 98.903 | 6 770.020 | ||||
BQST | 99.212 | 8.359 | BQST | 98.531 | 34.885 | ||||
AFE_BQST | 98.335 | 15.755 | AFE_BQST | 99.337 | 59.621 |
Tab. 3 Experimental results of different sample sizes under 2 qubits and 4 qubits
量子数据/qubit | 数据样本数 | 模型 | Avr_F/% | 运行时间/s | 量子数据/qubit | 数据样本数 | 模型 | Avr_F/% | 运行时间/s |
---|---|---|---|---|---|---|---|---|---|
2 | 200 | D_QST | 92.827 | 18.825 | 4 | 800 | D_QST | 94.762 | 171.531 |
C_QST | 92.237 | 31.592 | C_QST | 88.498 | 166.740 | ||||
U_QST | 94.841 | 52.555 | U_QST | 85.507 | 478.890 | ||||
BQST | 96.576 | 1.076 | BQST | 95.921 | 5.237 | ||||
AFE_BQST | 96.621 | 1.465 | AFE_BQST | 94.349 | 7.554 | ||||
400 | D_QST | 95.914 | 37.658 | 1 000 | D_QST | 95.281 | 232.766 | ||
C_QST | 94.580 | 63.128 | C_QST | 90.761 | 213.430 | ||||
U_QST | 96.830 | 106.193 | U_QST | 88.133 | 645.320 | ||||
BQST | 92.539 | 1.480 | BQST | 96.476 | 6.134 | ||||
AFE_BQST | 97.240 | 2.097 | AFE_BQST | 94.776 | 8.593 | ||||
1 000 | D_QST | 97.752 | 94.290 | 6 000 | D_QST | 98.660 | 1 495.239 | ||
C_QST | 97.797 | 155.443 | C_QST | 96.378 | 1 263.060 | ||||
U_QST | 98.609 | 256.514 | U_QST | 98.237 | 4 155.660 | ||||
BQST | 97.749 | 2.679 | BQST | 94.424 | 20.681 | ||||
AFE_BQST | 97.911 | 4.217 | AFE_BQST | 99.119 | 36.396 | ||||
2 000 | D_QST | 98.276 | 188.897 | 8 000 | D_QST | 98.989 | 1 585.457 | ||
C_QST | 98.709 | 312.258 | C_QST | 96.768 | 1 662.183 | ||||
U_QST | 99.208 | 554.446 | U_QST | 98.704 | 5 560.150 | ||||
BQST | 98.842 | 4.785 | BQST | 97.632 | 27.318 | ||||
AFE_BQST | 98.089 | 8.359 | AFE_BQST | 99.233 | 47.251 | ||||
4 000 | D_QST | 99.208 | 379.409 | 10 000 | D_QST | 99.162 | 1 763.861 | ||
C_QST | 99.095 | 629.247 | C_QST | 96.925 | 2 056.470 | ||||
U_QST | 99.457 | 1 099.216 | U_QST | 98.903 | 6 770.020 | ||||
BQST | 99.212 | 8.359 | BQST | 98.531 | 34.885 | ||||
AFE_BQST | 98.335 | 15.755 | AFE_BQST | 99.337 | 59.621 |
1 | VOGEL K, RISKEN H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[J]. Physical Review. A, General Physics, 1989, 40(5): 2847-2849. |
2 | FAROOQ A, KHALID U, REHMAN J UR, et al. Robust quantum state tomography method for quantum sensing [J]. Sensors, 2022, 22(7): No.2669. |
3 | FANO U. Description of states in quantum mechanics by density matrix and operator techniques [J]. Reviews of Modern Physics, 1957, 29(1): 74-93. |
4 | CAHILL K E, GLAUBER R J. Density operators and quasiprobability distributions[J]. Physical Review, 1969, 177(5): 1882-1902. |
5 | JAMES D F V, KWIAT P G, MUNRO W J, et al. Measurement of qubits [J]. Physical Review. A, Covering Atomic, Molecular, and Optical Physics and Quantum Science, 2001, 64(5): No.052312. |
6 | 殷琪. 量子层析技术的理论及其光学实验研究[D]. 合肥:中国科学技术大学, 2018:21-32. |
YIN Q. Studies on theories and optical experiments of quantum tomography technology [D]. Hefei: University of Science and Technology of China, 2018: 21-32. | |
7 | LUKENS J M, LAW K J H, JASRA A, et al. A practical and efficient approach for Bayesian quantum state estimation [J]. New Journal of Physics, 2020, 22(6): No.063038. |
8 | 杨庆. 机器学习应用于量子态层析技术研究[D]. 成都:电子科技大学, 2022:3. |
YANG Q. Application of machine learning in quantum state tomography [D]. Chengdu: University of Electronic Science and Technology of China, 2022: 3. | |
9 | 崔子嵬. 机器学习在量子信息与其他物理中的应用[D]. 哈尔滨:哈尔滨工业大学, 2020:34-39. |
CUI Z W. Machine learning in quantum information and other physics[D]. Harbin: Harbin Institute of Technology, 2020: 34-39. | |
10 | 潘成威,丛爽. 基于宽度神经网络的2比特量子态的估计[C]// 第22届中国系统仿真技术及其应用学术年会论文集. 重庆: 中国自动化学会系统仿真专业委员会、中国仿真学会仿真技术应用专业委员会, 2021: 80-84. |
PAN C W, CONG S. Estimation of 2-bit quantum state based on broad neural networks[C]// Proceedings of the 22nd China Annual Conference on System Simulation Technology and its Applications. Chongqing: Technical Committee on System Simulation of Chinese Association of Automation, Simulation Technology Application Professional Committee of China Simulation Federation, 2021: 80-84. | |
11 | MA H, DONG D, PETERSEN I R. On how neural networks enhance quantum state tomography with limited resources[C]// Proceedings of the 60th IEEE Conference on Decision and Control. Piscataway: IEEE, 2021: 4146-4151. |
12 | TORLAI G, MAZZOLA G, CARRASQUILLA J, et al. Neural-network quantum state tomography [J]. Nature Physics, 2018, 14(5): 447-450. |
13 | LOHANI S, SEARLES T A, KIRBY B T, et al. On the experimental feasibility of quantum state reconstruction via machine learning[J]. IEEE Transactions on Quantum Engineering, 2021, 2: No.2103410. |
14 | PAN C, ZHANG J. Deep learning-based quantum state tomography with imperfect measurement [J]. International Journal of Theoretical Physics, 2022, 61: No.227. |
15 | NIELSEN M A, CHUANG I L. 量子计算与量子信息[M]. 赵大千,译. 北京:清华大学出版社, 2003:13-17. |
NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. ZHAO D Q, translated. Beijing: Tsinghua University Press, 2003: 13-17. | |
16 | CHEN C L P, LIU Z. Broad learning system: a new learning paradigm and system without going deep [C]// Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2017: 1271-1276. |
17 | JOHANSSON J R, NATION P D, NORI F. QuTiP 2: a Python framework for the dynamics of open quantum systems[J]. Computer Physics Communications, 2013, 184(4): 1234-1240. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||