Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 616-623.DOI: 10.11772/j.issn.1001-9081.2024030282
• Multimedia computing and computer simulation • Previous Articles
Tianqi ZHANG, Shuang TAN(), Xiwen SHEN, Juan TANG
Received:
2024-03-18
Revised:
2024-06-20
Accepted:
2024-06-25
Online:
2024-10-14
Published:
2025-02-10
Contact:
Shuang TAN
About author:
ZHANG Tianqi, born in 1971, Ph. D., professor. His research interests include modulation and demodulation of communication signals, blind processing.Supported by:
通讯作者:
谭霜
作者简介:
张天骐(1971—),男,四川眉山人,教授,博士,CCF会员,主要研究方向:通信信号的调制解调、盲处理基金资助:
CLC Number:
Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature[J]. Journal of Computer Applications, 2025, 45(2): 616-623.
张天骐, 谭霜, 沈夕文, 唐娟. 融合注意力机制和多尺度特征的图像水印方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 616-623.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030282
噪声种类 | 噪声描述 |
---|---|
缩放 | 调整 |
dropout | |
高斯模糊 | 使用高斯核对 |
JPEG压缩 | 将 JPEG压缩攻击强度由压缩质量参数 |
椒盐噪声 |
Tab. 1 Noise layer types and descriptions
噪声种类 | 噪声描述 |
---|---|
缩放 | 调整 |
dropout | |
高斯模糊 | 使用高斯核对 |
JPEG压缩 | 将 JPEG压缩攻击强度由压缩质量参数 |
椒盐噪声 |
方法 | PSNR/dB | SSIM/% |
---|---|---|
HiDDeN-NN | 35.61 | 98.63 |
本文方法-NN | 41.09 | 99.65 |
HiDDeN | 30.88 | 96.65 |
本文方法 | 34.47 | 97.90 |
Tab. 2 PSNR and SSIM of watermarked images generated by different methods
方法 | PSNR/dB | SSIM/% |
---|---|---|
HiDDeN-NN | 35.61 | 98.63 |
本文方法-NN | 41.09 | 99.65 |
HiDDeN | 30.88 | 96.65 |
本文方法 | 34.47 | 97.90 |
方法 | 不可见性 | 鲁棒性(不同噪声攻击下的BER) | 参数量/106 | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM/% | dropout( | cropout(p=0.3) | crop(p=0.035) | 高斯模糊(σ=2) | JPEG压缩(q=80) | 平均 | ||
HiDDeN | 30.88 | 96.65 | 0.07 | 0.06 | 0.12 | 0.04 | 0.37 | 0.13 | 0.45 |
ReDMark | 35.93 | 96.60 | 0.08 | 0.08 | 0.12 | 0.50 | 0.25 | 0.21 | 0.13 |
IGA | — | — | 0.22 | 0.13 | 0.26 | 0.19 | 0.13 | 0.19 | — |
SSLW | 33.50 | 84.12 | 0.12 | 0.49 | 0.20 | 0.01 | 0.17 | 0.20 | 27.70 |
ARWGAN | 35.87 | 96.88 | 0.04 | 0.04 | 0.04 | 0.03 | 0.14 | 0.06 | 1.50 |
本文方法 | 35.92 | 98.14 | 0.04 | 0.02 | 0.02 | 0.03 | 0.17 | 0.06 | 0.55 |
Tab. 3 Performance comparison of different methods on COCO dataset
方法 | 不可见性 | 鲁棒性(不同噪声攻击下的BER) | 参数量/106 | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM/% | dropout( | cropout(p=0.3) | crop(p=0.035) | 高斯模糊(σ=2) | JPEG压缩(q=80) | 平均 | ||
HiDDeN | 30.88 | 96.65 | 0.07 | 0.06 | 0.12 | 0.04 | 0.37 | 0.13 | 0.45 |
ReDMark | 35.93 | 96.60 | 0.08 | 0.08 | 0.12 | 0.50 | 0.25 | 0.21 | 0.13 |
IGA | — | — | 0.22 | 0.13 | 0.26 | 0.19 | 0.13 | 0.19 | — |
SSLW | 33.50 | 84.12 | 0.12 | 0.49 | 0.20 | 0.01 | 0.17 | 0.20 | 27.70 |
ARWGAN | 35.87 | 96.88 | 0.04 | 0.04 | 0.04 | 0.03 | 0.14 | 0.06 | 1.50 |
本文方法 | 35.92 | 98.14 | 0.04 | 0.02 | 0.02 | 0.03 | 0.17 | 0.06 | 0.55 |
数据集 | 不可见性 | 鲁棒性(不同噪声攻击下的BER) | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM/% | 缩放(r=0.8) | Dropout( | 高斯模糊(σ=2) | JPEG压缩(q=80) | 椒盐噪声( | 平均 | |
COCO | 34.47 | 97.90 | 0.01 | 0.07 | 0.03 | 0.04 | 0.07 | 0.04 |
ImageNet | 34.88 | 97.75 | 0.02 | 0.08 | 0.03 | 0.05 | 0.07 | 0.05 |
VOC 2012 | 35.10 | 97.83 | 0.02 | 0.08 | 0.03 | 0.05 | 0.07 | 0.05 |
NaSC TG2 | 37.21 | 99.52 | 0.03 | 0.08 | 0.03 | 0.06 | 0.07 | 0.05 |
Animal | 35.74 | 97.89 | 0.02 | 0.07 | 0.02 | 0.06 | 0.07 | 0.05 |
Intel | 34.56 | 98.24 | 0.03 | 0.09 | 0.03 | 0.03 | 0.07 | 0.05 |
Tab. 4 Comparison of results of proposed method on different datasets
数据集 | 不可见性 | 鲁棒性(不同噪声攻击下的BER) | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM/% | 缩放(r=0.8) | Dropout( | 高斯模糊(σ=2) | JPEG压缩(q=80) | 椒盐噪声( | 平均 | |
COCO | 34.47 | 97.90 | 0.01 | 0.07 | 0.03 | 0.04 | 0.07 | 0.04 |
ImageNet | 34.88 | 97.75 | 0.02 | 0.08 | 0.03 | 0.05 | 0.07 | 0.05 |
VOC 2012 | 35.10 | 97.83 | 0.02 | 0.08 | 0.03 | 0.05 | 0.07 | 0.05 |
NaSC TG2 | 37.21 | 99.52 | 0.03 | 0.08 | 0.03 | 0.06 | 0.07 | 0.05 |
Animal | 35.74 | 97.89 | 0.02 | 0.07 | 0.02 | 0.06 | 0.07 | 0.05 |
Intel | 34.56 | 98.24 | 0.03 | 0.09 | 0.03 | 0.03 | 0.07 | 0.05 |
方法 | 不可见性 | 鲁棒性(不同噪声攻击下的BER) | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM/% | 缩放(r=0.8) | dropout( | 高斯模糊(σ=2) | JPEG压缩(q=80) | 椒盐噪声( | 平均 | |
w/o am | 33.42 | 97.77 | 0.19 | 0.07 | 0.07 | 0.09 | 0.05 | 0.09 |
w/o mf | 30.79 | 96.76 | 0.08 | 0.10 | 0.14 | 0.09 | 0.14 | 0.11 |
本文方法 | 34.47 | 97.90 | 0.01 | 0.07 | 0.03 | 0.04 | 0.07 | 0.04 |
Tab. 5 Comparison of ablation experimental results
方法 | 不可见性 | 鲁棒性(不同噪声攻击下的BER) | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM/% | 缩放(r=0.8) | dropout( | 高斯模糊(σ=2) | JPEG压缩(q=80) | 椒盐噪声( | 平均 | |
w/o am | 33.42 | 97.77 | 0.19 | 0.07 | 0.07 | 0.09 | 0.05 | 0.09 |
w/o mf | 30.79 | 96.76 | 0.08 | 0.10 | 0.14 | 0.09 | 0.14 | 0.11 |
本文方法 | 34.47 | 97.90 | 0.01 | 0.07 | 0.03 | 0.04 | 0.07 | 0.04 |
1 | KASHYAP N, SINHA G R. Image watermarking using 3-level Discrete Wavelet Transform (DWT)[J]. International Journal of Modern Education and Computer Science, 2012, 4(3): 50-56. |
2 | ABRAHAM J, PAUL V. An imperceptible spatial domain color image watermarking scheme[J]. Journal of King Saud University —Computer and Information Sciences, 2019, 31(1): 125-133. |
3 | ALI M, AHN C W, PANT M. A robust image watermarking technique using SVD and differential evolution in DCT domain[J]. Optik, 2014, 125(1): 428-434. |
4 | LU S P, WANG R, ZHONG T, et al. Large-capacity image steganography based on invertible neural networks[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10811-10820. |
5 | LU J, NI J, SU W, et al. Wavelet-based CNN for robust and high-capacity image watermarking[C]// Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6. |
6 | PLATA M, SYGA P. Robust spatial-spread deep neural image watermarking[C]// Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2020: 62-70. |
7 | TEOH Y J, LING H C, WONG W K, et al. A hybrid SVD-based image watermarking scheme utilizing both U and V orthogonal vectors for robustness and imperceptibility[J]. IEEE Access, 2023, 11: 51018-51031. |
8 | 钟瑞泽,谢海波. 基于视觉显著性与量化指数调制的图像鲁棒水印算法[J]. 电子测量与仪器学报, 2020, 34(3): 17-27. |
ZHONG R Z, XIE H B. Robust image watermarking algorithm based on visual saliency and quantization exponential modulation[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(3): 17-27. | |
9 | YUAN Z, LIU D, ZHANG X, et al. DCT-based color digital image blind watermarking method with variable steps[J]. Multimedia Tools and Applications, 2020, 79(41/42): 30557-30581. |
10 | 张天骐,周琳,梁先明,等. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法[J]. 电子与信息学报, 2021, 43(7): 2038-2045. |
ZHANG T Q, ZHOU L, LIANG X M, et al. A robust watermarking algorithm based on Blob-Harris and NSCT-Zernike[J]. Journal of Electronics and Information Technology, 2021, 43(7): 2038-2045. | |
11 | FANG H, JIA Z, MA Z, et al. PIMoG: an effective screen-shooting noise-layer simulation for deep-learning-based watermarking network[C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 2267-2275. |
12 | MAHAPATRA D, AMRIT P, SINGH O P, et al. Autoencoder-convolutional neural network-based embedding and extraction model for image watermarking[J]. Journal of Electronic Imaging, 2023, 32(2): No.021604. |
13 | WANG X, MA D, HU K, et al. Mapping based residual convolution neural network for non-embedding and blind image watermarking[J]. Journal of Information Security and Applications, 2021, 59: No.102820. |
14 | BALUJA S. Hiding images in plain sight: deep steganography[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2066-2076. |
15 | ZHU J, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11219. Cham: Springer, 2018: 682-697. |
16 | HAO K, FENG G, ZHANG X. Robust image watermarking based on generative adversarial network[J]. China Communications, 2020, 17(11): 131-140. |
17 | ZHAO Z, LI J, LUO Z, et al. Remote sensing image scene classification based on an enhanced attention module[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(11): 1926-1930. |
18 | FU J, LIU J, JIANG J, et al. Scene segmentation with dual relation-aware attention network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2547-2560. |
19 | YAN C, HAO Y, LI L, et al. Task-adaptive attention for image captioning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 43-51. |
20 | CHEN B, TAN W, COATRIEUX G, et al. A serial image copy-move forgery localization scheme with source/target distinguishment[J]. IEEE Transactions on Multimedia, 2021, 23: 3506-3517. |
21 | ZHANG H, LI Y. Digital watermarking via inverse gradient attention[C]// Proceedings of the 9th International Conference on Behavioural and Social Computing. Piscataway: IEEE, 2022: 1-3. |
22 | YU C. Attention based data hiding with generative adversarial networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 1120-1128. |
23 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
24 | AHMADI M, NOROUZI A, KARIMI N, et al. ReDMark: framework for residual diffusion watermarking based on deep networks[J]. Expert Systems with Applications, 2020, 146: No.113157. |
25 | FERNANDEZ P, SABLAYROLLES A, FURON T, et al. Watermarking images in self-supervised latent spaces[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 3054-3058. |
26 | HUANG J, LUO T, LI L, et al. ARWGAN: attention-guided robust image watermarking model based on GAN[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: No.5018417. |
27 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. |
28 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. |
29 | ZHOU Z, LI S, WU W, et al. NaSC-TG2: natural scene classification with Tiangong-2 remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3228-3242. |
[1] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[2] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[3] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[4] | Haiteng MENG, Xiaole ZHAO, Tianrui LI. Lightweight image super-resolution reconstruction based on asymmetric information distillation network [J]. Journal of Computer Applications, 2025, 45(2): 601-609. |
[5] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[6] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[7] | Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging [J]. Journal of Computer Applications, 2025, 45(1): 204-213. |
[8] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[9] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[10] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[11] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[12] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. |
[13] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. |
[14] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. |
[15] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||