Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2522-2529.DOI: 10.11772/j.issn.1001-9081.2024071036
• Artificial intelligence • Previous Articles
Jing YU1,2,3, Yanping CHEN1,2,3(), Ying HU1,2,3, Ruizhang HUANG1,2,3, Yongbin QIN1,2,3
Received:
2024-07-23
Revised:
2024-10-12
Accepted:
2024-10-16
Online:
2024-11-19
Published:
2025-08-10
Contact:
Yanping CHEN
About author:
YU Jing, born in 1999, M. S. candidate. Her research interests include natural language processing, named entity recognition.Supported by:
余婧1,2,3, 陈艳平1,2,3(), 扈应1,2,3, 黄瑞章1,2,3, 秦永彬1,2,3
通讯作者:
陈艳平
作者简介:
余婧(1999—),女,贵州贵阳人,硕士研究生,CCF会员,主要研究方向:自然语言处理、命名实体识别基金资助:
CLC Number:
Jing YU, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Sequence labeling optimization method combined with entity boundary offset[J]. Journal of Computer Applications, 2025, 45(8): 2522-2529.
余婧, 陈艳平, 扈应, 黄瑞章, 秦永彬. 结合实体边界偏移的序列标注优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2522-2529.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071036
数据集 | 样本数 | ||
---|---|---|---|
训练集 | 验证集 | 测试集 | |
CLUENER2020 | 10 748 | — | 1 342 |
Resume-zh | 3 821 | 463 | 477 |
MSRA | 46 364 | — | 4 365 |
Tab. 1 Dataset information
数据集 | 样本数 | ||
---|---|---|---|
训练集 | 验证集 | 测试集 | |
CLUENER2020 | 10 748 | — | 1 342 |
Resume-zh | 3 821 | 463 | 477 |
MSRA | 46 364 | — | 4 365 |
参数 | 设定值 | 参数 | 设定值 |
---|---|---|---|
LSTM hidden size | 1 024 | 词向量维度 | 768 |
Batch size | 16 | 权重衰减 | 0.01 |
Epoch | 50 | 学习率 | 3×10-5 |
Dropout | 0.5 | 优化器 | Adam |
Tab. 2 Parameter setting
参数 | 设定值 | 参数 | 设定值 |
---|---|---|---|
LSTM hidden size | 1 024 | 词向量维度 | 768 |
Batch size | 16 | 权重衰减 | 0.01 |
Epoch | 50 | 学习率 | 3×10-5 |
Dropout | 0.5 | 优化器 | Adam |
数据集 | 方法 | P | R | F1 |
---|---|---|---|---|
CLUENER2020 | BiLSTM-CRF[ | 71.06 | 68.97 | 70.00 |
Bert-CRF[ | 77.24 | 80.46 | 78.82 | |
RoBERTa-CRF[ | 79.26 | 81.69 | 80.42 | |
本文方法 | 79.89 | 81.08 | 80.48 | |
Resume-zh | Lattice-LSTM[ | 94.81 | 94.11 | 94.46 |
SoftLexicon[ | 96.08 | 96.13 | 96.11 | |
FLAT[ | — | — | 95.86 | |
FGN[ | 96.49 | 97.08 | 96.79 | |
MECT[ | — | — | 95.98 | |
MTLWT[ | — | — | 96.33 | |
EF-DNN[ | 95.47 | 95.64 | 95.56 | |
本文方法 | 96.84 | 96.01 | 96.42 | |
MSRA | MRC[ | 90.39 | 89.00 | 89.68 |
MRC+DSC[ | 96.67 | 96.77 | 96.72 | |
Seq-to-set[ | 93.21 | 91.97 | 92.58 | |
PIQN[ | 93.61 | 93.35 | 93.48 | |
EF-DNN[ | 94.13 | 92.65 | 93.39 | |
本文方法 | 95.49 | 94.13 | 94.80 |
Tab. 3 Comparison of experimental results of different methods on different datasets
数据集 | 方法 | P | R | F1 |
---|---|---|---|---|
CLUENER2020 | BiLSTM-CRF[ | 71.06 | 68.97 | 70.00 |
Bert-CRF[ | 77.24 | 80.46 | 78.82 | |
RoBERTa-CRF[ | 79.26 | 81.69 | 80.42 | |
本文方法 | 79.89 | 81.08 | 80.48 | |
Resume-zh | Lattice-LSTM[ | 94.81 | 94.11 | 94.46 |
SoftLexicon[ | 96.08 | 96.13 | 96.11 | |
FLAT[ | — | — | 95.86 | |
FGN[ | 96.49 | 97.08 | 96.79 | |
MECT[ | — | — | 95.98 | |
MTLWT[ | — | — | 96.33 | |
EF-DNN[ | 95.47 | 95.64 | 95.56 | |
本文方法 | 96.84 | 96.01 | 96.42 | |
MSRA | MRC[ | 90.39 | 89.00 | 89.68 |
MRC+DSC[ | 96.67 | 96.77 | 96.72 | |
Seq-to-set[ | 93.21 | 91.97 | 92.58 | |
PIQN[ | 93.61 | 93.35 | 93.48 | |
EF-DNN[ | 94.13 | 92.65 | 93.39 | |
本文方法 | 95.49 | 94.13 | 94.80 |
边界位置 | CLUENER2020 | Resume-zh | MSRA | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | |
开始边界 | 89.33 | 92.38 | 90.83 | 97.31 | 97.61 | 97.48 | 97.69 | 97.57 | 97.63 |
结束边界 | 86.69 | 91.15 | 88.86 | 97.93 | 98.40 | 98.16 | 96.35 | 97.11 | 96.73 |
Tab. 4 Boundary performance of offset sequences on different datasets
边界位置 | CLUENER2020 | Resume-zh | MSRA | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | |
开始边界 | 89.33 | 92.38 | 90.83 | 97.31 | 97.61 | 97.48 | 97.69 | 97.57 | 97.63 |
结束边界 | 86.69 | 91.15 | 88.86 | 97.93 | 98.40 | 98.16 | 96.35 | 97.11 | 96.73 |
[1] | 王颖洁,张程烨,白凤波,等. 中文命名实体识别研究综述[J]. 计算机科学与探索, 2023, 17(2): 324-341. |
WANG Y J, ZHANG C Y, BAI F B, et al. Review of Chinese named entity recognition research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. | |
[2] | ZHANG J, XIE J, HOU W, et al. Mapping the knowledge structure of research on patient adherence: knowledge domain visualization based co-word analysis and social network analysis[J]. PLoS ONE, 2012, 7(4): No.e34497. |
[3] | BABYCH B, HARTLEY A. Improving machine translation quality with automatic named entity recognition[C]// Proceedings of the 7th International EAMT Workshop on MT and Other Language Technology Tools, Improving MT Through Other Language Technology Tools, Resource and Tools for Building MT at EACL 2003. Stroudsburg: ACL, 2003:1-8. |
[4] | MOLLÁ D, VAN ZAANEN M, SMITH D. Named entity recognition for question answering[C]// Proceedings of the Australasian Language Technology Association Workshop 2006. [S.l.]: Australasian Language Technology Association, 2006: 51-58. |
[5] | HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558. |
[6] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
[7] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[8] | GUO J, LIU J, YANG C, et al. BERT-LSTM network prediction model based on Transformer[C]// Proceedings of the 36th Chinese Control and Decision Conference. Piscataway: IEEE, 2024: 3098-3103. |
[9] | CAI Y, LIU Q, GAN Y, et al. DiFiNet: boundary-aware semantic differentiation and filtration network for nested named entity recognition[C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 6455-6471. |
[10] | MO Y, YANG J, LIU J, et al. MCL-NER: cross-lingual named entity recognition via multi-view contrastive learning[C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 18789-18797. |
[11] | WANG Y, LU L, YANG W, et al. Chinese named entity recognition based on heterogeneous graph and dynamic attention network[C]// Proceedings of the IEEE 15th International Symposium on Autonomous Decentralized System. Piscataway: IEEE, 2023: 1-8. |
[12] | WU S, SONG X, FENG Z, et al. NFLAT: non-flat-lattice Transformer for Chinese named entity recognition[EB/OL]. [2024-10-10].. |
[13] | JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]// Proceedings of the Conference of the 2018 North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1446-1459. |
[14] | RAMSHAW L A, MARCUS M P. Text chunking using transformation-based learning[M]// ARMSTRONG S, CHURCH K, ISABELLE P, et al. Natural language processing using very large corpora. Dordrecht: Springer, 1999: 157-176. |
[15] | CHEN C, KONG F. Enhancing entity boundary detection for better Chinese named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg: ACL, 2021: 20-25. |
[16] | TAN C, QIU W, CHEN M, et al. Boundary enhanced neural span classification for nested named entity recognition[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9016-9023. |
[17] | COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12:2493-2537. |
[18] | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2024-10-10].. |
[19] | SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. |
[20] | LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 260-270. |
[21] | LI Z, SONG M, ZHU Y, et al. Chinese nested named entity recognition based on boundary prompt[C]// Proceedings of the 2023 International Conference on Web Information Systems and Applications, LNCS 14094. Singapore: Springer, 2023: 331-343. |
[22] | WANG C, XIONG X, WANG L, et al. A lexicon enhanced Chinese long named entity recognition using word-aware attention[C]// Proceedings of the 6th International Conference on Machine Learning and Natural Language Processing. New York: ACM, 2023: 234-242. |
[23] | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 2227-2237. |
[24] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
[25] | LI D, YAN L, YANG J, et al. Dependency syntax guided BERT-BILSTM-GAM-CRF for Chinese NER[J]. Expert Systems with Applications, 2022, 196: No.116682. |
[26] | ZHU P, CHENG D, YANG F, et al. Improving Chinese named entity recognition by large-scale syntactic dependency graph[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 979-991. |
[27] | ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1554-1564. |
[28] | MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5951-5960. |
[29] | LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice Transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842. |
[30] | XU L, TONG Y, DONG Q, et al. CLUENER2020: fine-grained named entity recognition dataset and benchmark for Chinese[EB/OL]. [2024-10-10].. |
[31] | LEVOW G A. The third international Chinese language processing bakeoff: word segmentation and named entity recognition[C]// Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing. Stroudsburg: ACL, 2006: 108-117. |
[32] | XUAN Z, BAO R, JIANG S. FGN: fusion glyph network for Chinese named entity recognition[C]// Proceedings of the 2020 China Conference on Knowledge Graph and Semantic Computing, CCIS 1356. Singapore: Springer, 2021: 28-40. |
[33] | WU S, SONG X, FENG Z. MECT: multi-metadata embedding based cross-Transformer for Chinese named entity recognition[C]// Proceedings of the 59th Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 1529-1539. |
[34] | WANG X, XU X, HUANG D, et al. Multi-task label-wise transformer for Chinese named entity recognition[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2023, 22(4): No.118. |
[35] | LONG K, ZHAO H, SHAO Z, et al. Deep neural network with embedding fusion for Chinese named entity recognition[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2023, 22(3): No.91. |
[36] | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859. |
[37] | LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced NLP tasks[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 465-476. |
[38] | TAN Z, SHEN Y, ZHANG S, et al. A sequence-to-set network for nested named entity recognition[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021:3936-3942. |
[39] | SHEN Y, WANG X, TAN Z, et al. Parallel instance query network for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 947-961. |
[1] | Zhangjie XU, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Nested named entity recognition combined with boundary generation by multi-objective learning [J]. Journal of Computer Applications, 2025, 45(7): 2229-2236. |
[2] | Lixiao ZHANG, Yao MA, Yuli YANG, Dan YU, Yongle CHEN. Large-scale IoT binary component identification based on named entity recognition [J]. Journal of Computer Applications, 2025, 45(7): 2288-2295. |
[3] | Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span [J]. Journal of Computer Applications, 2025, 45(5): 1504-1510. |
[4] | Jie HU, Shuaixing WU, Zhilan CAO, Yan ZHANG. Named entity recognition model based on global information fusion and multi-dimensional relation perception [J]. Journal of Computer Applications, 2025, 45(5): 1511-1519. |
[5] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[6] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. |
[7] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[8] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
[9] | Xiaoyan ZHANG, Zhengyu DUAN. Cross-lingual zero-resource named entity recognition model based on sentence-level generative adversarial network [J]. Journal of Computer Applications, 2023, 43(8): 2406-2411. |
[10] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. |
[11] | Guanyou XU, Weisen FENG. Python named entity recognition model based on transformer [J]. Journal of Computer Applications, 2022, 42(9): 2693-2700. |
[12] | Jie HU, Yan HU, Mengchi LIU, Yan ZHANG. Chinese named entity recognition based on knowledge base entity enhanced BERT model [J]. Journal of Computer Applications, 2022, 42(9): 2680-2685. |
[13] | Yayao ZUO, Haoyu CHEN, Zhiran CHEN, Jiawei HONG, Kun CHEN. Named entity recognition method combining multiple semantic features [J]. Journal of Computer Applications, 2022, 42(7): 2001-2008. |
[14] | Yi ZHANG, Shuangsheng WANG, Bin HE, Peiming YE, Keqiang LI. Named entity recognition method of elementary mathematical text based on BERT [J]. Journal of Computer Applications, 2022, 42(2): 433-439. |
[15] | Lanlan ZENG, Yisong WANG, Panfeng CHEN. Named entity recognition based on BERT and joint learning for judgment documents [J]. Journal of Computer Applications, 2022, 42(10): 3011-3017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||