Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2437-2445.DOI: 10.11772/j.issn.1001-9081.2023081080
• Artificial intelligence • Previous Articles Next Articles
Huanliang SUN1,2(), Siyi WANG1,2, Junling LIU1,2, Jingke XU1,2,3
Received:
2023-08-10
Revised:
2023-10-11
Accepted:
2023-10-17
Online:
2023-12-18
Published:
2024-08-10
Contact:
Huanliang SUN
About author:
SUN Huanliang , born in 1969, Ph. D., professor. His researchinterests include spatial data management, data mining.Supported by:
孙焕良1,2(), 王思懿1,2, 刘俊岭1,2, 许景科1,2,3
通讯作者:
孙焕良
作者简介:
孙焕良(1969—),男,黑龙江望奎人,教授,博士生导师,博士,CCF高级会员,主要研究方向:空间数据管理、数据挖掘 sunhl@sjzu.edu.cn基金资助:
CLC Number:
Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data[J]. Journal of Computer Applications, 2024, 44(8): 2437-2445.
孙焕良, 王思懿, 刘俊岭, 许景科. 社交媒体数据中水灾事件求助信息提取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2437-2445.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081080
序号 | 文本 | 应抽取信息 | 等级 |
---|---|---|---|
1 | 崔庙镇王宗店村有老人骨折被困,现在救援队过不去没有办法,寻求社会帮助,急需冲锋舟,快艇,救生衣 | 地点:崔庙镇王宗店村; 人员:老人; 情况:老人骨折被困; 物资:冲锋舟,快艇,救生衣 | 紧急 |
2 | 凤泉英才幼儿园困了8个孩子,没电没水,水深将近两米。18337358185,联系一下救援队把孩子救出来 | 地点:凤泉英才幼儿园; 人员:孩子; 数量:8个; 生命线:没电没水,水深将近两米 | 重要 |
3 | 救援队员正在卫辉重灾区救援,晚上需要安排食宿地方,20人。电话18238798911 | 地点:卫辉重灾区; 物资种类:食宿地方; 物资数量:20人 | 一般 |
4 | 浚县滑县交接处,没走村民,不要观望,抓紧走了 | 无关 |
Tab. 1 Examples of flood event information extraction
序号 | 文本 | 应抽取信息 | 等级 |
---|---|---|---|
1 | 崔庙镇王宗店村有老人骨折被困,现在救援队过不去没有办法,寻求社会帮助,急需冲锋舟,快艇,救生衣 | 地点:崔庙镇王宗店村; 人员:老人; 情况:老人骨折被困; 物资:冲锋舟,快艇,救生衣 | 紧急 |
2 | 凤泉英才幼儿园困了8个孩子,没电没水,水深将近两米。18337358185,联系一下救援队把孩子救出来 | 地点:凤泉英才幼儿园; 人员:孩子; 数量:8个; 生命线:没电没水,水深将近两米 | 重要 |
3 | 救援队员正在卫辉重灾区救援,晚上需要安排食宿地方,20人。电话18238798911 | 地点:卫辉重灾区; 物资种类:食宿地方; 物资数量:20人 | 一般 |
4 | 浚县滑县交接处,没走村民,不要观望,抓紧走了 | 无关 |
示例 | 分类标签 |
---|---|
…郑州预测28日11点到29日11点雨量最大… | 水灾提示 |
愿中国人平安在紧要关头发挥中国力量… | 舆情信息 |
郑州市这边有三十多床被子,几箱口罩以及消毒用品… | 救援事件 |
守护贾鲁河的700多名消防官兵急需背心,内裤,袜子等物资,村里进水高度已超过2米,没水没电已成重灾区。 | 求助事件 |
我们专业所以价值贵千丝发语®高级发型定制… | 无关信息 |
Tab. 2 Text corpus classification examples
示例 | 分类标签 |
---|---|
…郑州预测28日11点到29日11点雨量最大… | 水灾提示 |
愿中国人平安在紧要关头发挥中国力量… | 舆情信息 |
郑州市这边有三十多床被子,几箱口罩以及消毒用品… | 救援事件 |
守护贾鲁河的700多名消防官兵急需背心,内裤,袜子等物资,村里进水高度已超过2米,没水没电已成重灾区。 | 求助事件 |
我们专业所以价值贵千丝发语®高级发型定制… | 无关信息 |
一级指标 | 二级指标 | 一级指标 | 二级指标 |
---|---|---|---|
人员伤亡情况 | 受灾人数 | 物资需求情况 | 救援物资 |
疾病情况 | 生活物资 | ||
年龄 | 医疗物资 | ||
洪涝问题 | 被淹情况 | 能源中断情况 | 水 |
淹没深度 | 电 | ||
房屋倒损情况 | 裂缝 | 燃气 | |
爆炸 | 通信 |
Tab. 3 Flood rescue evaluation index system
一级指标 | 二级指标 | 一级指标 | 二级指标 |
---|---|---|---|
人员伤亡情况 | 受灾人数 | 物资需求情况 | 救援物资 |
疾病情况 | 生活物资 | ||
年龄 | 医疗物资 | ||
洪涝问题 | 被淹情况 | 能源中断情况 | 水 |
淹没深度 | 电 | ||
房屋倒损情况 | 裂缝 | 燃气 | |
爆炸 | 通信 |
程度 | 受灾人口 | 年龄 | 疾病情况 | 淹没深度 |
---|---|---|---|---|
Ⅰ | (0,10] | 成人 | 慢性病(高血压、高血脂、糖尿病等) | 部分腿部或脚部 |
Ⅱ | (10,100] | 成人孕妇 | 传染病(感冒发烧) | 腿部至腰部,行走困难 |
Ⅲ | (100,500] | 儿童 | 腿脚不便:需要借助轮椅或其他工具 | 腰部以上部位,导致完全丧失肢体功能 |
Ⅳ | >500 | 70岁以上老人 | 完全无法行走:肢体瘫痪、神经障碍等 | 个体所在的楼层已经完全淹没,完全无法脱离受灾环境 |
Tab. 4 Grading criteria for three-level evaluation indicators
程度 | 受灾人口 | 年龄 | 疾病情况 | 淹没深度 |
---|---|---|---|---|
Ⅰ | (0,10] | 成人 | 慢性病(高血压、高血脂、糖尿病等) | 部分腿部或脚部 |
Ⅱ | (10,100] | 成人孕妇 | 传染病(感冒发烧) | 腿部至腰部,行走困难 |
Ⅲ | (100,500] | 儿童 | 腿脚不便:需要借助轮椅或其他工具 | 腰部以上部位,导致完全丧失肢体功能 |
Ⅳ | >500 | 70岁以上老人 | 完全无法行走:肢体瘫痪、神经障碍等 | 个体所在的楼层已经完全淹没,完全无法脱离受灾环境 |
实体 | 实体类别数 | 实体 | 实体类别数 |
---|---|---|---|
地点 | 448 | 人员数 | 149 |
人员类型 | 182 | 物资种类 | 356 |
人员情况 | 189 | 物资数 | 37 |
人员年龄 | 45 | 生命线状况 | 241 |
Tab. 5 Distribution of entities in annotation dataset
实体 | 实体类别数 | 实体 | 实体类别数 |
---|---|---|---|
地点 | 448 | 人员数 | 149 |
人员类型 | 182 | 物资种类 | 356 |
人员情况 | 189 | 物资数 | 37 |
人员年龄 | 45 | 生命线状况 | 241 |
模型 | 提示模板 | 输入文本 | 标注结果 | 答案 |
---|---|---|---|---|
ChatFlow-7B | {text} 提取文本信息,如地点、人员类型、人员情况、人员数量、物资需求、物资数量、生命线状况 | 凤泉区大块镇北庄村口赛特钢瓶厂有七人被困,已经被泡两天一夜没有进食了,其中还有两位70岁老人急需救援,已经停水停气 提取文本信息,如地点、人员类型、人员情况、人员年龄、人员数量、物资种类、生命线状况 | (地点:凤泉区大块镇北庄村口赛特钢瓶厂),(人员类型:老人),(人员情况:被困,已经被泡两天一夜没有进食了),(人员年龄:70岁),(人员数量:七人),(物资种类:食),(物资数量:),(生命线状况:已经停电停气) | 地点:凤泉区大块镇北庄村,人员类型:无,人员情况:七人被困,资种类:无,生命线状况:无 |
ChatFlowFlood | {text} 提取信息 | 凤泉区大块镇北庄村口赛特钢瓶厂有七人被困,已经被泡两天一夜没有进食了,其中还有两位70岁老人急需救援,已经停水停气 提取信息 | 标注结果如ChatFlow-7B模型 | 地点:凤泉区大块镇北庄村口赛特钢瓶厂,人员类型:老人,人员情况:被困,已经被泡两天一夜没有进食了,人员年龄:70岁,人员数量:七人,物资种类:没有进食,物资数量:,生命线状况:已经停水停气 |
Tab. 6 Test examples of ChatFlowFlood information extraction task
模型 | 提示模板 | 输入文本 | 标注结果 | 答案 |
---|---|---|---|---|
ChatFlow-7B | {text} 提取文本信息,如地点、人员类型、人员情况、人员数量、物资需求、物资数量、生命线状况 | 凤泉区大块镇北庄村口赛特钢瓶厂有七人被困,已经被泡两天一夜没有进食了,其中还有两位70岁老人急需救援,已经停水停气 提取文本信息,如地点、人员类型、人员情况、人员年龄、人员数量、物资种类、生命线状况 | (地点:凤泉区大块镇北庄村口赛特钢瓶厂),(人员类型:老人),(人员情况:被困,已经被泡两天一夜没有进食了),(人员年龄:70岁),(人员数量:七人),(物资种类:食),(物资数量:),(生命线状况:已经停电停气) | 地点:凤泉区大块镇北庄村,人员类型:无,人员情况:七人被困,资种类:无,生命线状况:无 |
ChatFlowFlood | {text} 提取信息 | 凤泉区大块镇北庄村口赛特钢瓶厂有七人被困,已经被泡两天一夜没有进食了,其中还有两位70岁老人急需救援,已经停水停气 提取信息 | 标注结果如ChatFlow-7B模型 | 地点:凤泉区大块镇北庄村口赛特钢瓶厂,人员类型:老人,人员情况:被困,已经被泡两天一夜没有进食了,人员年龄:70岁,人员数量:七人,物资种类:没有进食,物资数量:,生命线状况:已经停水停气 |
模型 | 标签 数据量 | PBERT/% | RBERT/% | FBERT/% |
---|---|---|---|---|
BERT-FLAT | 800 | 63.47 | 61.54 | 62.49 |
BERT-MECT | 800 | 75.81 | 69.23 | 72.37 |
BERT-IDCNN+CRF | 800 | 70.43 | 73.12 | 71.75 |
BERT-BiLSTM-CRF | 800 | 75.05 | 72.29 | 73.64 |
ChatGLM-6B | 500 | 70.36 | 73.62 | 71.95 |
Chinese- | 500 | 65.04 | 61.95 | 63.46 |
ChatFlow-7B | 0 | 49.18 | 50.33 | 49.75 |
ChatFlowFlood | 500 | 86.17 | 86.06 | 86.11 |
Tab. 7 Test results of Chinese named entity recognition
模型 | 标签 数据量 | PBERT/% | RBERT/% | FBERT/% |
---|---|---|---|---|
BERT-FLAT | 800 | 63.47 | 61.54 | 62.49 |
BERT-MECT | 800 | 75.81 | 69.23 | 72.37 |
BERT-IDCNN+CRF | 800 | 70.43 | 73.12 | 71.75 |
BERT-BiLSTM-CRF | 800 | 75.05 | 72.29 | 73.64 |
ChatGLM-6B | 500 | 70.36 | 73.62 | 71.95 |
Chinese- | 500 | 65.04 | 61.95 | 63.46 |
ChatFlow-7B | 0 | 49.18 | 50.33 | 49.75 |
ChatFlowFlood | 500 | 86.17 | 86.06 | 86.11 |
标签数据量 | PBERT/% | RBERT/% | FBERT/% |
---|---|---|---|
0 | 49.18 | 50.33 | 49.75 |
200 | 71.86 | 74.31 | 73.06 |
500 | 86.17 | 86.06 | 86.11 |
Tab. 8 Impact of label data volume of instruction fine-tuning on model performance
标签数据量 | PBERT/% | RBERT/% | FBERT/% |
---|---|---|---|
0 | 49.18 | 50.33 | 49.75 |
200 | 71.86 | 74.31 | 73.06 |
500 | 86.17 | 86.06 | 86.11 |
1 | 救灾和物资保障司.应急管理部发布 2023年7月全国自然灾害情况[EB/OL]. (2023-08-04) [2023-08-05]. . |
Disaster Relief and Material Support Division. The Ministry of Emergency Management released the national natural disaster situation in July 2023 [EB/OL]. (2023-08-04) [2023-08-05]. . | |
2 | 郑万波,陈慧敏,吴燕清,等.基于应急救援的信息共享策略仿真[J].计算机应用,2023,43(1):306-311. |
ZHENG W B, CHEN H M, WU Y Q, et al. Simulation of information sharing strategy based on emergency rescue [J]. Journal of Computer Applications,2023,43(1): 306-311. | |
3 | 李玥琪,王晰巍,王楠阿雪,等.突发事件下社交媒体网络舆情风险识别及预警模型研究[J].情报学报, 2022, 41(10): 1085-1099. |
LI Y Q, WANG X W, WANG N A X, et al. Risk identification and early warning model of social media network public opinion in emergencies[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(10): 1085-1099. | |
4 | DONG Z S, MENG L, CHRISTENSON L, et al. Social media information sharing for natural disaster response[J]. Natural Hazards, 2021, 107: 2077-2104. |
5 | 王益鹏,张雪英,党玉龙,等.顾及时空过程的台风灾害事件知识图谱表示方法[J].地球信息科学学报,2023,25(6):1228-1239. |
WANG Y P, ZHANG X Y, DANG Y L, et al. Knowledge graph representation of typhoon disaster events based on spatiotemporal processes[J]. Journal of Geo-Information Science,2023, 25(6):1228-1239. | |
6 | 鲍彤,章成志.ChatGPT中文信息抽取能力测评——以三种典型的抽取任务为例[J].数据分析与知识发现, 2023, 7(9): 1-10. |
BAO T, ZHANG C Z. Extracting Chinese information with ChatGPT: an empirical study by three typical tasks[J/OL]. Data Analysis and Knowledge Discovery, 2023, 7(9): 1-10. | |
7 | META. ChatFlow-7B [EB/OL]. (2023-08-01) [2023-06-15]. . |
8 | 田董炜,仇阿根,张志然.多层次地质灾害领域本体构建与应用[J].测绘科学,2019,44(6):330-336. |
TIAN D W, QIU A G, ZHANG Z R. Domain ontology construction and application of multi-level geological disasters[J]. Science of Surveying and Mapping,2019,44(6):330-336. | |
9 | 杨选辉,邓硕,刘春年.基于本体的自然灾害应急物流领域知识表示[J].图书馆学研究,2012(22): 60-66. |
YANG X H, DENG S, LIU C N. Knowledge representation of natural disaster emergency logistics domain based on ontology [J]. Research on Library Science, 2012(22): 60-66. | |
10 | KHADIR A C, ALIANE H, GUESSOUM A. Ontology learning: Grand tour and challenges[J]. Computer Science Review, 2021, 39: 100339. |
11 | 任飞亮,沈继坤,孙宾宾,等.从文本中构建领域本体技术综述[J].计算机学报,2019,42(3):654-676. |
REN F L, SHEN J K, SUN B B, et al. A review for domain ontology construction from text [J]. Chinese Journal of Computers,2019,42(3): 654-676. | |
12 | KRAVETS P, BUROV Y, LYTVYN V, et al. Gaming method of ontology clusterization[J]. Webology, 2019, 16(1):55-76. |
13 | 胡段牧,袁武,牛方曲,等.中文文本蕴含气象灾害事件信息多模型融合抽取方法[J].地球信息科学学报,2022, 24(12): 2342-2355. |
HU D M, YUAN W, NIU F Q, et al. Multi-model fusion extraction method for Chinese text implicative meteorological disasters event information[J]. Journal of Geo-Information Science, 2022, 24(12): 2342-2355. | |
14 | 唐晓波,王琼赋,牟昊.基于词共现与词向量的概念层次关系自动抽取模型——以学术论文评价领域为例[J].情报科学, 2022, 40(10): 3-11. |
TANG X B, WANG Q F, MU H. Automatic extraction of concept hierarchies based on word co-occurrence and word vector: taking the academic paper evaluation as an example [J]. Information Science, 2022, 40(10): 3-11. | |
15 | 赵继贵,钱育蓉,王魁,等.中文命名实体识别研究综述[J].计算机工程与应用,2024, 60(1): 15-27. |
ZHAO J G, QIAN Y R, WANG K, et al. Survey of Chinese named entity recognition research[J]. Computer Engineering and Applications, 2024, 60(1): 15-27. | |
16 | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. |
17 | GRAVES A. Long short-term memory[C]// Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37-45. |
18 | 代建华,彭若瑶,许路,等.基于深度神经网络的信息抽取研究综述[J].西南师范大学学报(自然科学版), 2022, 47(4): 1-11. |
DAI J H, PENG R Y, XU L, et al. A survey of information extraction based on deep neural networks[J]. Journal of Southwest Normal University (Natural Science Edition),2022, 47(4): 1-11. | |
19 | LI X, YAN H, QIU X, et al. FLAT:Chinese NER using flat- lattice transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020:6836-6842. |
20 | WU S, SONG X, FENG Z. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition [EB/OL]. [2022-12-20]. . |
21 | FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30: 681-694. |
22 | TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. (2023-05-25) [2023-06-10]. . |
23 | Google. Google responds to OpenAI with its own chatbot: ‘bard’[EB/OL]. (2023-02-06) [2023-06-07]. . |
24 | 百度.文心大模型[EB/OL]. [2023-06-07]. . |
BAIDU. Wen Xin big model [EB/OL]. [2023-06-10]. . | |
25 | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 2020, 33: 1877-1901. |
26 | OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[EB/OL]. [2023-08-01]. . |
27 | SANH V, WEBSON A, RAFFEL C, et al. Multitask prompted training enables zero-shot task generalization [EB/OL]. (2022-05-17) [2023-06-10]. . |
28 | ZHOU C, LIU P, XU P, et al. LIMA: less is more for alignment [EB/OL]. (2023-05-18) [2023-06-10]. . |
29 | CHEN H, ZHANG Y, ZHANG Q, et al. Maybe only 0.5% data is needed: a preliminary exploration of low training data instruction tuning [EB/OL]. (2023-05-16) [2023-06-10]. . |
30 | ZHAO Z, LI Y, HOU C, et al. TencentPretrain: a scalable and flexible toolkit for pre-training models of different modalities [EB/OL]. (2023-06-11) [2023-06-20]. . |
31 | 田兴鹏,朱晓荣,朱洪波.基于KM算法的分布式无线节点任务分配方法[J].北京邮电大学学报, 2020, 43(6): 96-102. |
TIAN X P, ZHU X R, ZHU H B. Distributed wireless node task allocation method based on KM algorithm [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(6): 96-102. | |
32 | 李文韬,张明洁,张京红,等.基于模糊综合评价法的海南热带气旋灾害经济损失影响评估[J].热带农业科学, 2022, 42(9):133-139. |
LI W T, ZHANG M J, ZHANG J H, et al. The assessment of economic loss of tropical cyclone disaster in Hainan based on fuzzy and comprehensive evaluation[J]. Chinese Journal of Tropical Agriculture, 2022, 42(9): 133-139. | |
33 | 朱贵玉,方世跃,尹春风,等.基于FAHP-CRITIC的暴雨洪涝灾害风险评估:以西安市临潼区为例[J]. 水利水电技术, 2023, 54(4): 37-48. |
ZHU G Y, FANG S Y, YIN C F, et al. Risk assessment of rainstorm-flood disaster based on FAHP-CRITIC: taking Lintong District of Xi’an City as an example[J]. Water Resources and Hydropower Engineering, 2023, 54(4): 37-48. | |
34 | PENG J, ZHANG J. Urban flooding risk assessment based on GIS-game theory combination weight: a case study of Zhengzhou City[J]. International Journal of Disaster Risk Reduction, 2022, 77: 103080. |
35 | 全国减灾救灾标准化技术委员会(SAC/TC 307). 自然灾害分类与代码: [S]. 北京:中华人民共和国国家质量监督检验检疫总局,2012-10-12. |
National Standardization Technical Committee for Disaster Reduction and Relief (SAC/TC 307). Classification and Code of Natural Disasters: [S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2012-10-12. | |
36 | CUI Y, HUANG C. A Chinese text classification method based on BERT and convolutional neural network[C]// Proceedings of the 2021 7th International Conference on Systems and Informatics. Piscataway: IEEE, 2021:1-6. |
37 | NERUDA G A, WINARKO E. Traffic event detection from twitter using a combination of CNN and BERT[C]// Proceedings of the 2021 International Conference on Advanced Computer Science and Information Systems. Piscataway: IEEE, 2021:1-7. |
38 | DING B, QIN C, LIU L, et al. Is GPT-3 a good data annotator? [EB/OL]. (2023-06-14) [2023-06-20]. . |
39 | TAORI R, GULRAJANI I, ZHANG T, et al. Stanford Alpaca: an instruction-following LLaMA model[EB/OL]. (2023-04-03) [2023-06-25]. . |
40 | 史研.水利行业标准《洪涝灾情评估标准》(SL579—2012)出版发行[J].中国水利,2012(18):72. |
SHI Y. Water conservancy industry standard “Flood Disaster Evaluation Standard” (SL579-2012) was published and issued [J]. China Water Resources,2012(18):72. | |
41 | 吴海波,张珺茹,沈玉玲.长护险背景下失能人群机构护理等级评定标准研究[J].上海保险, 2020(11): 39-44. |
WU H B, ZHANG J R, SHEN Y L. Research on institutional nursing rating standards for disabled people under the background of long-term care insurance [J]. Shanghai Insurance, 2020(11): 39-44. | |
42 | ZHANG T, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT [EB/OL]. (2019-02-06) [2023-05-07]. . |
[1] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[2] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
[3] | Xiaoyan ZHANG, Zhengyu DUAN. Cross-lingual zero-resource named entity recognition model based on sentence-level generative adversarial network [J]. Journal of Computer Applications, 2023, 43(8): 2406-2411. |
[4] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. |
[5] | Jie HU, Yan HU, Mengchi LIU, Yan ZHANG. Chinese named entity recognition based on knowledge base entity enhanced BERT model [J]. Journal of Computer Applications, 2022, 42(9): 2680-2685. |
[6] | Guanyou XU, Weisen FENG. Python named entity recognition model based on transformer [J]. Journal of Computer Applications, 2022, 42(9): 2693-2700. |
[7] | Yayao ZUO, Haoyu CHEN, Zhiran CHEN, Jiawei HONG, Kun CHEN. Named entity recognition method combining multiple semantic features [J]. Journal of Computer Applications, 2022, 42(7): 2001-2008. |
[8] | Yi ZHANG, Shuangsheng WANG, Bin HE, Peiming YE, Keqiang LI. Named entity recognition method of elementary mathematical text based on BERT [J]. Journal of Computer Applications, 2022, 42(2): 433-439. |
[9] | Lanlan ZENG, Yisong WANG, Panfeng CHEN. Named entity recognition based on BERT and joint learning for judgment documents [J]. Journal of Computer Applications, 2022, 42(10): 3011-3017. |
[10] | Yue WANG, Mengxuan WANG, Sheng ZHANG, Wen DU. Alarm text named entity recognition based on BERT [J]. Journal of Computer Applications, 2020, 40(2): 535-540. |
[11] | YAN Hong, CHEN Xingshu, WANG Wenxian, WANG Haizhou, YIN Mingyong. Recognition model for French named entities based on deep neural network [J]. Journal of Computer Applications, 2019, 39(5): 1288-1292. |
[12] | ZHOU Xiang, LI Shaobo, YANG Guanci. Entity recognition of clothing commodity attributes [J]. Journal of Computer Applications, 2015, 35(7): 1945-1949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||