Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2838-2847.DOI: 10.11772/j.issn.1001-9081.2024081178
• Data science and technology • Previous Articles
Hongjun ZHANG1,2, Gaojun PAN3(), Hao YE4,5, Yubin LU5, Yiheng MIAO6
Received:
2024-08-20
Revised:
2024-11-16
Accepted:
2024-12-04
Online:
2024-12-17
Published:
2025-09-10
Contact:
Gaojun PAN
About author:
ZHANG Hongjun, born in 1985, Ph. D., senior engineer. His research interests include high-performance computing, key technologies of big data and new quality productivity.Supported by:
张宏俊1,2, 潘高军3(), 叶昊4,5, 陆玉彬5, 缪宜恒6
通讯作者:
潘高军
作者简介:
张宏俊(1985—),男,安徽马鞍山人,高级工程师,博士,主要研究方向:高性能计算、大数据关键技术及新质生产力基金资助:
CLC Number:
Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition[J]. Journal of Computer Applications, 2025, 45(9): 2838-2847.
张宏俊, 潘高军, 叶昊, 陆玉彬, 缪宜恒. 结合深度学习和张量分解的多源异构数据分析方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2838-2847.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081178
方法 | Purity | ARI | RI | NMI |
---|---|---|---|---|
DMCR | 0.63 | 0.55 | 0.52 | 0.62 |
DMMC | 0.70 | 0.57 | 0.80 | 0.67 |
张量方法 | 0.84 | 0.77 | 0.82 | 0.84 |
FAST-CNN | 0.85 | 0.75 | 0.86 | 0.85 |
CNN Tensor | 0.87 | 0.81 | 0.85 | 0.85 |
Tab. 1 Comparison of clustering results of different methods
方法 | Purity | ARI | RI | NMI |
---|---|---|---|---|
DMCR | 0.63 | 0.55 | 0.52 | 0.62 |
DMMC | 0.70 | 0.57 | 0.80 | 0.67 |
张量方法 | 0.84 | 0.77 | 0.82 | 0.84 |
FAST-CNN | 0.85 | 0.75 | 0.86 | 0.85 |
CNN Tensor | 0.87 | 0.81 | 0.85 | 0.85 |
数据集 | 方法 | ACC | ARI | NMI | F1 |
---|---|---|---|---|---|
DBLP | GAE | 0.51 | 0.28 | 0.23 | 0.52 |
DMCR | 0.51 | 0.28 | 0.23 | 0.52 | |
DMMC | 0.63 | 0.27 | 0.25 | 0.58 | |
SDCN | 0.63 | 0.27 | 0.25 | 0.58 | |
SwMC | 0.36 | 0.12 | 0.21 | 0.43 | |
张量方法 | 0.90 | 0.72 | 0.82 | 0.84 | |
FAST-CNN | 0.92 | 0.76 | 0.84 | 0.83 | |
CNN Tensor | 0.93 | 0.78 | 0.86 | 0.85 | |
ACM | GAE | 0.64 | 0.41 | 0.42 | 0.72 |
DMCR | 0.64 | 0.41 | 0.42 | 0.72 | |
DMMC | 0.84 | 0.56 | 0.65 | 0.83 | |
SDCN | 0.84 | 0.56 | 0.65 | 0.83 | |
SwMC | 0.42 | 0.28 | 0.23 | 0.42 | |
张量方法 | 0.92 | 0.72 | 0.76 | 0.89 | |
FAST-CNN | 0.92 | 0.72 | 0.78 | 0.92 | |
CNN Tensor | 0.93 | 0.72 | 0.78 | 0.92 | |
IMDB | GAE | 0.37 | 0.23 | 0.23 | 0.45 |
SDCN | 0.42 | 0.21 | 0.21 | 0.36 | |
SwMC | 0.28 | 0.12 | 0.22 | 0.35 | |
张量方法 | 0.62 | 0.18 | 0.11 | 0.57 | |
CNN Tensor | 0.71 | 0.16 | 0.13 | 0.59 |
Tab. 2 Performance comparison results of different methods on three datasets
数据集 | 方法 | ACC | ARI | NMI | F1 |
---|---|---|---|---|---|
DBLP | GAE | 0.51 | 0.28 | 0.23 | 0.52 |
DMCR | 0.51 | 0.28 | 0.23 | 0.52 | |
DMMC | 0.63 | 0.27 | 0.25 | 0.58 | |
SDCN | 0.63 | 0.27 | 0.25 | 0.58 | |
SwMC | 0.36 | 0.12 | 0.21 | 0.43 | |
张量方法 | 0.90 | 0.72 | 0.82 | 0.84 | |
FAST-CNN | 0.92 | 0.76 | 0.84 | 0.83 | |
CNN Tensor | 0.93 | 0.78 | 0.86 | 0.85 | |
ACM | GAE | 0.64 | 0.41 | 0.42 | 0.72 |
DMCR | 0.64 | 0.41 | 0.42 | 0.72 | |
DMMC | 0.84 | 0.56 | 0.65 | 0.83 | |
SDCN | 0.84 | 0.56 | 0.65 | 0.83 | |
SwMC | 0.42 | 0.28 | 0.23 | 0.42 | |
张量方法 | 0.92 | 0.72 | 0.76 | 0.89 | |
FAST-CNN | 0.92 | 0.72 | 0.78 | 0.92 | |
CNN Tensor | 0.93 | 0.72 | 0.78 | 0.92 | |
IMDB | GAE | 0.37 | 0.23 | 0.23 | 0.45 |
SDCN | 0.42 | 0.21 | 0.21 | 0.36 | |
SwMC | 0.28 | 0.12 | 0.22 | 0.35 | |
张量方法 | 0.62 | 0.18 | 0.11 | 0.57 | |
CNN Tensor | 0.71 | 0.16 | 0.13 | 0.59 |
方法 | SSE | WSS | DBI | CH | 轮廓系数 |
---|---|---|---|---|---|
DMCR | 1 000 | 500 | 0.8 | 100 | 0.50 |
DMMC | 800 | 400 | 0.6 | 120 | 0.60 |
张量方法 | 500 | 250 | 0.4 | 150 | 0.70 |
CNN Tensor | 700 | 350 | 0.7 | 110 | 0.60 |
FAST-CNN | 600 | 300 | 0.5 | 130 | 0.65 |
Tab. 3 Clustering effects of different methods on DBLP dataset
方法 | SSE | WSS | DBI | CH | 轮廓系数 |
---|---|---|---|---|---|
DMCR | 1 000 | 500 | 0.8 | 100 | 0.50 |
DMMC | 800 | 400 | 0.6 | 120 | 0.60 |
张量方法 | 500 | 250 | 0.4 | 150 | 0.70 |
CNN Tensor | 700 | 350 | 0.7 | 110 | 0.60 |
FAST-CNN | 600 | 300 | 0.5 | 130 | 0.65 |
数据规模 | 维度 | SSE | WSS | DBI | CH | 轮廓系数 |
---|---|---|---|---|---|---|
5 000 | 100 | 1 800 | 900 | 0.40 | 130 | 0.65 |
500 | 1 600 | 810 | 0.35 | 135 | 0.67 | |
10 000 | 100 | 1 500 | 750 | 0.30 | 140 | 0.70 |
500 | 1 300 | 700 | 0.25 | 145 | 0.73 | |
15 000 | 100 | 1 200 | 600 | 0.20 | 150 | 0.74 |
500 | 1 000 | 550 | 0.15 | 155 | 0.76 |
Tab. 4 Comparison of performance metrics of CNN Tensor on ACM dataset at different sizes and dimensions
数据规模 | 维度 | SSE | WSS | DBI | CH | 轮廓系数 |
---|---|---|---|---|---|---|
5 000 | 100 | 1 800 | 900 | 0.40 | 130 | 0.65 |
500 | 1 600 | 810 | 0.35 | 135 | 0.67 | |
10 000 | 100 | 1 500 | 750 | 0.30 | 140 | 0.70 |
500 | 1 300 | 700 | 0.25 | 145 | 0.73 | |
15 000 | 100 | 1 200 | 600 | 0.20 | 150 | 0.74 |
500 | 1 000 | 550 | 0.15 | 155 | 0.76 |
S/% | DMCR | DMMC | FAST-CNN | 张量方法 | CNN Tensor |
---|---|---|---|---|---|
平均 | 1.06 | 1.01 | 1.08 | 1.16 | 1.17 |
10 | 0.58 | 0.62 | 0.63 | 0.65 | 0.66 |
20 | 0.78 | 0.54 | 0.85 | 0.93 | 0.94 |
30 | 1.11 | 1.12 | 1.15 | 1.21 | 1.22 |
40 | 1.29 | 1.28 | 1.32 | 1.43 | 1.45 |
50 | 1.52 | 1.48 | 1.53 | 1.58 | 1.59 |
Tab. 5 Mean NRMSE on identification datasets
S/% | DMCR | DMMC | FAST-CNN | 张量方法 | CNN Tensor |
---|---|---|---|---|---|
平均 | 1.06 | 1.01 | 1.08 | 1.16 | 1.17 |
10 | 0.58 | 0.62 | 0.63 | 0.65 | 0.66 |
20 | 0.78 | 0.54 | 0.85 | 0.93 | 0.94 |
30 | 1.11 | 1.12 | 1.15 | 1.21 | 1.22 |
40 | 1.29 | 1.28 | 1.32 | 1.43 | 1.45 |
50 | 1.52 | 1.48 | 1.53 | 1.58 | 1.59 |
方法 | Purity | ARI | RI | NMI |
---|---|---|---|---|
无张量无CNN | 0.68 | 0.65 | 0.71 | 0.69 |
无张量有CNN | 0.72 | 0.74 | 0.77 | 0.78 |
有张量无CNN | 0.85 | 0.80 | 0.82 | 0.80 |
有张量有CNN | 0.87 | 0.81 | 0.85 | 0.85 |
Tab. 6 Results of ablation experiments
方法 | Purity | ARI | RI | NMI |
---|---|---|---|---|
无张量无CNN | 0.68 | 0.65 | 0.71 | 0.69 |
无张量有CNN | 0.72 | 0.74 | 0.77 | 0.78 |
有张量无CNN | 0.85 | 0.80 | 0.82 | 0.80 |
有张量有CNN | 0.87 | 0.81 | 0.85 | 0.85 |
[1] | WU C K, CHENG C T, UWATE Y, et al. State-of-the-art and research opportunities for next-generation consumer electronics [J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 937-948. |
[2] | JAVEED D, SAEED M S, AHMAD I, et al. An intelligent intrusion detection system for smart consumer electronics network [J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 906-913. |
[3] | LIU Z, WENG Y, XU R, et al. An efficient machine-generated data modeling approach based on domain-aware knowledge for intelligent consumer electronics [J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 984-995. |
[4] | YAN G J, CHEN J J, LIU J Y, et al. Random clustering and dynamic recognition-based operation strategy for energy storage system in industrial park [J]. Journal of Energy Storage, 2023, 73(Pt D): No.109192. |
[5] | LÄHDERANTA T, LOVÉN L, RUHA L, et al. Capacitated spatial clustering with multiple constraints and attributes [J]. Engineering Applications of Artificial Intelligence, 2024, 127(Pt A): No.107182. |
[6] | REN L, QIN Y, CHEN Y, et al. Deep document clustering via adaptive hybrid representation learning [J]. Knowledge-Based Systems, 2023, 281: No.111058. |
[7] | YANG Z, NIU H, WANG X, et al. A segmentation method based on the deep fuzzy segmentation model in combination with SCANDLE clustering [J]. Pattern Recognition, 2024, 146: No.110027. |
[8] | FENG R, XU X, YU Z T, et al. A machine-learning assisted multi-cluster assessment for decarbonization in the chemical fiber industry toward net-zero: a case study in a Chinese province [J]. Journal of Cleaner Production, 2023, 425: No.138965. |
[9] | KEERIN P, IAM-ON N, LIU J J, et al. Summarising multiple clustering-centric estimates with OWA operators for improved KNN imputation on microarray data [J]. Fuzzy Sets and Systems, 2023, 473: No.108718. |
[10] | TSUYUZAKI K, YAMAMOTO K, TOYOSHIMA Y, et al. WormTensor: a clustering method for time-series whole-brain activity data from C. elegans [J]. BMC Bioinformatics, 2023, 24: No.254. |
[11] | GUO Y, LIU M. Spatial-temporal trajectory anomaly detection based on an improved spectral clustering algorithm [J]. Intelligent Data Analysis, 2023, 27(1): 31-58. |
[12] | ZHANG S, LI K. A novel density peaks clustering algorithm with isolation kernel and k-induction [J]. Applied Sciences, 2023, 13(1): No.322. |
[13] | RASHEED R, ASHOUR W. Multiple Means based on Multiple Clustering (MMMC) imputation [J]. International Journal of Data Science and Technology, 2022, 8(3): 48-54. |
[14] | ZHOU J, WANG D, LING L, et al. Comparative analysis of the performance of complex texture clustering driven by computational intelligence methods using multiple clustering models [J]. Computational Intelligence and Neuroscience, 2022, 2022: No.8449491. |
[15] | ZHEN C, WANG Y, GENG J, et al. A review and performance evaluation of clustering frameworks for single-cell Hi-C data [J]. Briefings in Bioinformatics, 2022, 23(6): No.bbac385. |
[16] | WAGNER F H, DALAGNOL R, SÁNCHEZ A H, et al. K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation [J]. Frontiers in Environmental Science, 2022, 10: No.946729. |
[17] | LUO Y, ZHAO X, LI Z, et al. Low-rank tensor function representation for multi-dimensional data recovery [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 46(5): 3351-3369. |
[18] | CHU J, ZHAO X, SONG D, et al. Improved semantic representation learning by multiple clustering for image-based 3D model retrieval [J]. International Journal on Semantic Web and Information Systems, 2022, 18(1): 1-20. |
[19] | WANG G, WANG J S, WANG H Y, et al. Fuzzy C-means clustering validity function based on multiple clustering performance evaluation components [J]. International Journal of Fuzzy Systems, 2022, 24(4): 1859-1887. |
[20] | WANG J, LYU S, DUAN J, et al. Sparse enhancement fuzzy broad learning system based on multiple clustering methods [J]. Journal of Physics: Conference Series, 2022, 2203: No.012068. |
[21] | BELLINI P, PALESI L A I, NESI P, et al. Multi clustering recommendation system for fashion retail [J]. Multimedia Tools and Applications, 2023, 82(7): 9989-10016. |
[22] | KUMAR B S, SUBRAMANIAN K. Removing of anomalies in high dimensional data multi clustering structure [J]. Indian Journal of Science and Technology, 2015, 8(32): 1-4. |
[23] | GAO X, WANG Y, HOU W, et al. Multi-view clustering for integration of gene expression and methylation data with tensor decomposition and self-representation learning [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(3): 2050-2063. |
[24] | LV W, ZHANG C, LI H, et al. Joint projection learning and tensor decomposition-based incomplete multiview clustering [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 17559-17570. |
[25] | ZHANG X, GONG Y, QIAO C, et al. Multiview deep learning based on tensor decomposition and its application in fault detection of overhead contact systems [J]. The Visual Computer, 2022, 38(4): 1457-1467. |
[26] | XIAO Q, DU S, HUANG Y. Multi-view spectral clustering based on low-rank tensor decomposition [C]// Proceedings of the 33rd Chinese Control and Decision Conference. Piscataway: IEEE, 2021: 2258-2263. |
[27] | WANG J. Multi-criteria recommender system with hybrid deep tensor decomposition [C]// Proceedings of the 4th International Conference on Data Storage and Data Engineering Conference. New York: ACM, 2021: 65-69. |
[28] | TANG R, LU G F. Constrained multilinear multi-view subspace representation learning for clustering based on tensor nuclear norm[C]// Proceedings of the 9th International Conference on Dependable Systems and Their Applications. Piscataway: IEEE, 2022: 685-691. |
[29] | LIU H, DING J, YANG L T, et al. Multi-dimensional correlative recommendation and adaptive clustering via incremental tensor decomposition for sustainable smart education [J]. IEEE Transactions on Sustainable Computing, 2020, 5(3): 389-402. |
[30] | CHEN Y, XIAO X, PENG C, et al. Low-rank tensor graph learning for multi-view subspace clustering [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 92-104. |
[31] | MASOUDI B, DANISHVAR S. Deep multi-modal schizophrenia disorder diagnosis via a GRU-CNN architecture [J]. Neural Network World, 2022, 32(3): 147-161. |
[32] | CHEN Z, XU Z, WANG D. Deep transfer tensor decomposition with orthogonal constraint for recommender systems [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4010-4018. |
[33] | HAO P, LI X, WU F. Learning Tucker Compression for deep CNN[C]// Proceedings of the 2022 Data Compression Conference. Piscataway: IEEE, 2022: 332-341. |
[34] | GONG X, CHEN W, AI B, et al. Deep-learning-aided alternating least squares for tensor CP decomposition and its application to massive MIMO channel estimation [EB/OL]. [2023-08-11].. |
[35] | TIAN Q, LI Z, FAN Q, et al. SRDTI: deep learning-based super-resolution for diffusion tensor MRI [EB/OL]. [2023-08-15].. |
[36] | XIA W, GAO Q, WANG Q, et al. Tensorized bipartite graph learning for multi-view clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5187-5202. |
[37] | CHENG Z, LI B, FAN Y, et al. A novel rank selection scheme in tensor ring decomposition based on reinforcement learning for deep neural networks [C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 3292-3296. |
[38] | ADEMOLA O A, EDUARD P, MAIRO L. Ensemble of tensor train decomposition and quantization methods for deep learning model compression [C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-6. |
[39] | 宋冰冰,张浩,吴子锋,等. 自动化张量分解加速卷积神经网络[J]. 软件学报, 2021, 32(11):3468-3481. |
SONG B B, ZHANG H, WU Z F, et al. Automated tensor decomposition to accelerate convolutional neural networks [J]. Journal of Software, 2021, 32(11): 3468-3481. | |
[40] | 王府鑫,王宁,曾奇雄. 基于工人长短期时空偏好的众包任务分配[J]. 软件学报, 2024, 35(10):4710-4728. |
WANG F X, WANG N, ZENG Q X. Long-and short-term spatio-temporal preference-aware task assignment in crowdsourcing [J]. Journal of Software, 2024, 35(10): 4710-4728. | |
[41] | REN F, HAN Y, WANG S, et al. A novel high-dimensional trajectories construction network based on multi-clustering algorithm [J]. EURASIP Journal on Wireless Communications and Networking, 2022, 2022: No.18. |
[42] | SHIRAN G, WEINSHALL D. Multi-modal deep clustering: unsupervised partitioning of images [C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 4728-4735. |
[43] | WANG T, GENG T, LI A, et al. FPDeep: scalable acceleration of CNN training on deeply-pipelined FPGA clusters [J]. IEEE Transactions on Computers, 2020, 69(8): 1143-1158. |
[44] | 陈玥丹,肖国庆,阳王东,等. 基于异构系统的多级并行稀疏张量向量乘算法[J]. 计算机学报, 2024, 47(2):441-455. |
CHEN Y D, XIAO G Q, YANG W D, et al. Exploiting hierarchical parallelism for sparse tensor-vector multiplication on heterogeneous parallel systems [J]. Chinese Journal of Computers, 2024, 47(2): 441-455. | |
[45] | 王培妍,段磊,郭正山,等.基于张量分解的知识超图链接预测模型[J].计算机研究与发展, 2021, 58(8):1599-1611. |
WANG P Y, DUAN L, GUO Z S, et al. Knowledge hypergraph link prediction model based on tensor decomposition [J]. Journal of Computer Research and Development, 2021, 58(8): 1599-1611. |
[1] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
[2] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
[3] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
[4] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
[5] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
[6] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. |
[7] | Yongpeng TAO, Shiqi BAI, Zhengwen ZHOU. Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation [J]. Journal of Computer Applications, 2025, 45(7): 2378-2386. |
[8] | Jinxian SUO, Liping ZHANG, Sheng YAN, Dongqi WANG, Yawen ZHANG. Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 2025, 45(7): 2043-2055. |
[9] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
[10] | Yingjun ZHANG, Weiwei YAN, Binhong XIE, Rui ZHANG, Wangdong LU. Gradient-discriminative and feature norm-driven open-world object detection [J]. Journal of Computer Applications, 2025, 45(7): 2203-2210. |
[11] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
[12] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
[13] | Tianchen HUA, Xiaoning MA, Hui ZHI. Portable executable malware static detection model based on shallow artificial neural network [J]. Journal of Computer Applications, 2025, 45(6): 1911-1921. |
[14] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. |
[15] | Kai CHEN, Hailiang YE, Feilong CAO. Classification algorithm for point cloud based on local-global interaction and structural Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1671-1676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||