Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1776-1783.DOI: 10.11772/j.issn.1001-9081.2024070930

• CCF BigData 2024 • Previous Articles    

Multi-scale information fusion time series long-term forecasting model based on neural network

Lanhao LI1,2, Haojun YAN1, Haoyi ZHOU1,3(), Qingyun SUN1,2, Jianxin LI1,2   

  1. 1.School of Computer Science and Engineering,Beihang University,Beijing 100191,China
    2.Beijing Advanced Innovation Center for Big Data and Brain Computing (Beihang University),Beijing 100191,China
    3.School of Software,Beihang University,Beijing 100191,China
  • Received:2024-07-04 Revised:2024-10-21 Accepted:2024-10-22 Online:2024-12-04 Published:2025-06-10
  • Contact: Haoyi ZHOU
  • About author:LI Lanhao, born in 1997, Ph. D. candidate. His research interests include time series data analysis.
    YAN Haojun, born in 2003. His research interests include time series data generation.
    SUN Qingyun, born in 1996, Ph. D., assistant professor. Her research interests include graph data mining.
    LI Jianxin, born in 1979, Ph. D., professor. His research interests include big data analysis.
  • Supported by:
    National Natural Science Foundation of China for Distinguished Young Scholars(62225202);Young Scientists Fund of National Natural Science Foundation of China(62202029);Project of the 9th Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)

基于神经网络的多尺度信息融合时间序列长期预测模型

李岚皓1,2, 严皓钧1, 周号益1,3(), 孙庆赟1,2, 李建欣1,2   

  1. 1.北京航空航天大学 计算机学院,北京 100191
    2.北京市大数据科学与脑机智能高精尖创新中心(北京航空航天大学),北京 100191
    3.北京航空航天大学 软件学院,北京 100191
  • 通讯作者: 周号益
  • 作者简介:李岚皓(1997—),男,辽宁鞍山人,博士研究生,CCF会员,主要研究方向:时序数据分析
    严皓钧(2003—),男,湖南永顺人,主要研究方向:时序数据生成
    孙庆赟(1996—),女,山东聊城人,助理教授,博士,CCF会员,主要研究方向:图数据挖掘
    李建欣(1979—),男,内蒙古赤峰人,教授,博士,CCF杰出会员,主要研究方向:大数据分析。
  • 基金资助:
    国家杰出青年科学基金资助项目(62225202);国家自然科学基金青年科学基金资助项目(62202029);第九届中国科协青年人才托举工程项目(2023QNRC001)

Abstract:

Time series data come from a wide range of social fields, from meteorology to finance and to medicine. Accurate long-term prediction is a key issue in time series data analysis, processing, and research. Aiming at exploitation and utilization of the correlation of different scales in time series data, a multi-scale information fusion time series long-term forecasting model based on neural network — ScaleNN was proposed with the purpose of better handling multi-scale problem in time series data to achieve more accurate long-term forecast. Firstly, fully connected neural network and convolutional neural network were combined to extract both global and local information effectively, and the two were aggregated for prediction. Then, by introducing a compression mechanism in the global information representation module, longer sequence input was accepted with a lighter structure, which increased perceptual range of the model and improved the model’s performance. Numerous experimental results demonstrate that ScaleNN outperforms the current excellent model in this field — PatchTST (Patch Time Series Transformer) on multiple real-world datasets. In specific, the running time is shortened by 35% with only 19% parameters required. It can be seen that ScaleNN can be applied to time series prediction problems in various fields widely, providing a foundation for forecasting in areas such as traffic flow prediction and weather forecasting.

Key words: time series, big data, data mining, deep learning, series forecasting

摘要:

时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序列长期预测模型ScaleNN,旨在更好地处理时间序列数据中的多尺度问题,从而实现更准确的长期预测。首先,结合全连接神经网络和卷积神经网络,有效提取全局信息与局部信息,并将2种信息聚合后进行预测;其次,通过在全局信息表征模块中引入压缩机制,以更轻量化的结构接受更长的序列输入,增大模型的感知范围并提高模型效能。大量实验结果表明,ScaleNN在多个真实世界数据集上的性能优于当前该领域的优秀模型PatchTST (Patch Time Series Transformer),在运行时间降低35%的同时仅需19%的参数量。可见,ScaleNN可广泛应用于不同领域的时间序列预测问题,为交通流量预测、天气预报等领域提供预测的基础。

关键词: 时间序列, 大数据, 数据挖掘, 深度学习, 序列预测

CLC Number: