Journal of Computer Applications ›› 0, Vol. ›› Issue (): 123-128.DOI: 10.11772/j.issn.1001-9081.2023121868
• Advanced computing • Previous Articles Next Articles
Jianhua CHEN1, Zhangqian WU2(), Wei SONG2
Received:
2024-01-11
Revised:
2024-03-13
Accepted:
2024-03-14
Online:
2025-01-24
Published:
2024-12-31
Contact:
Zhangqian WU
通讯作者:
吴张倩
作者简介:
陈健华(1985—),男,江苏启东人,主要研究方向:智能优化算法、图像识别、智能座舱基金资助:
CLC Number:
Jianhua CHEN, Zhangqian WU, Wei SONG. Particle swarm optimization algorithm incorporating premature detection mechanism and opposite random walk strategy[J]. Journal of Computer Applications, 0, (): 123-128.
陈健华, 吴张倩, 宋威. 融合早熟检测机制和对立随机游走策略的粒子群优化算法[J]. 《计算机应用》唯一官方网站, 0, (): 123-128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121868
参数 | 值 | 参数 | 值 |
---|---|---|---|
N | 30 | w | 0.9 |
D | 30 | 2 | |
T | 10 000 | 0.5,2.5 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
N | 30 | w | 0.9 |
D | 30 | 2 | |
T | 10 000 | 0.5,2.5 |
函数 | 函数 | 维数 | 函数表达式 | 变量范围 | 最优值 |
---|---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | ||
Rosenbrock | 30 | [-30,30] | 0 | ||
Rastrinin | 30 | [-5.12,5.12] | 0 | ||
Schwefel 1.2 | 30 | [-100,100] | 0 | ||
Griewank | 30 | [-600,600] | 0 | ||
Penalized 1 | 30 | [-50,50] | 0 | ||
Step | 30 | [-100,100] | 0 | ||
Penalized 2 | 30 | [-50,50] | 0 |
函数 | 函数 | 维数 | 函数表达式 | 变量范围 | 最优值 |
---|---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | ||
Rosenbrock | 30 | [-30,30] | 0 | ||
Rastrinin | 30 | [-5.12,5.12] | 0 | ||
Schwefel 1.2 | 30 | [-100,100] | 0 | ||
Griewank | 30 | [-600,600] | 0 | ||
Penalized 1 | 30 | [-50,50] | 0 | ||
Step | 30 | [-100,100] | 0 | ||
Penalized 2 | 30 | [-50,50] | 0 |
指标 | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | Mean | 0.00E+00 | 2.89E-02 | 0.00E+00 | 4.60E-13 | 0.00E+00 | 7.89E-04 | 6.29E-04 | 9.96E-04 |
Std | 1.31E-14 | 1.63E+01 | 2.01E+03 | 1.18E-15 | 7.01E+02 | 8.46E+04 | 4.91E-01 | 1.18E+02 | |
3 | Mean | 0.00E+00 | 5.00E-03 | 0.00E+00 | 4.16E-17 | 0.00E+00 | 4.98E-05 | 5.09E-04 | 1.35E-04 |
Std | 8.31E-23 | 1.56E+01 | 1.95E+02 | 4.18E-18 | 6.21E+02 | 2.03E+04 | 3.45E-01 | 8.12E+01 | |
5 | Mean | 1.30E-251 | 4.52E-02 | 0.00E+00 | 2.80E-66 | 0.00E+00 | 4.89E-05 | 1.16E-03 | 4.28E-04 |
Std | 2.31E-44 | 1.41E+00 | 1.15E+02 | 8.18E-38 | 5.09E+01 | 3.03E+03 | 1.15E-02 | 7.34E-01 | |
7 | Mean | 4.71E-204 | 9.68E-03 | 0.00E+00 | 1.36E-79 | 0.00E+00 | 2.80E-04 | 1.39E-04 | 8.77E-04 |
Std | 8.11E-67 | 1.21E-01 | 1.45E+01 | 2.13E-42 | 3.32E-01 | 7.02E-03 | 7.55E-03 | 7.41E-03 | |
9 | Mean | 8.60E-230 | 1.85E-03 | 0.00E+00 | 1.15E-87 | 0.00E+00 | 4.07E-05 | 1.73E-07 | 9.37E-05 |
Std | 3.61E-74 | 8.63E-02 | 1.01E+01 | 1.98E-65 | 1.01E-02 | 1.15E-04 | 1.28E-03 | 1.99E-03 | |
10 | Mean | 1.01E-148 | 1.23E-01 | 0.00E+00 | 2.98E-80 | 0.00E+00 | 2.71E-05 | 4.97E-03 | 1.80E-04 |
Std | 4.22E-46 | 9.27E-02 | 1.12E+01 | 1.28E-55 | 3.71E-01 | 2.71E-04 | 1.19E-02 | 5.11E-03 |
指标 | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | Mean | 0.00E+00 | 2.89E-02 | 0.00E+00 | 4.60E-13 | 0.00E+00 | 7.89E-04 | 6.29E-04 | 9.96E-04 |
Std | 1.31E-14 | 1.63E+01 | 2.01E+03 | 1.18E-15 | 7.01E+02 | 8.46E+04 | 4.91E-01 | 1.18E+02 | |
3 | Mean | 0.00E+00 | 5.00E-03 | 0.00E+00 | 4.16E-17 | 0.00E+00 | 4.98E-05 | 5.09E-04 | 1.35E-04 |
Std | 8.31E-23 | 1.56E+01 | 1.95E+02 | 4.18E-18 | 6.21E+02 | 2.03E+04 | 3.45E-01 | 8.12E+01 | |
5 | Mean | 1.30E-251 | 4.52E-02 | 0.00E+00 | 2.80E-66 | 0.00E+00 | 4.89E-05 | 1.16E-03 | 4.28E-04 |
Std | 2.31E-44 | 1.41E+00 | 1.15E+02 | 8.18E-38 | 5.09E+01 | 3.03E+03 | 1.15E-02 | 7.34E-01 | |
7 | Mean | 4.71E-204 | 9.68E-03 | 0.00E+00 | 1.36E-79 | 0.00E+00 | 2.80E-04 | 1.39E-04 | 8.77E-04 |
Std | 8.11E-67 | 1.21E-01 | 1.45E+01 | 2.13E-42 | 3.32E-01 | 7.02E-03 | 7.55E-03 | 7.41E-03 | |
9 | Mean | 8.60E-230 | 1.85E-03 | 0.00E+00 | 1.15E-87 | 0.00E+00 | 4.07E-05 | 1.73E-07 | 9.37E-05 |
Std | 3.61E-74 | 8.63E-02 | 1.01E+01 | 1.98E-65 | 1.01E-02 | 1.15E-04 | 1.28E-03 | 1.99E-03 | |
10 | Mean | 1.01E-148 | 1.23E-01 | 0.00E+00 | 2.98E-80 | 0.00E+00 | 2.71E-05 | 4.97E-03 | 1.80E-04 |
Std | 4.22E-46 | 9.27E-02 | 1.12E+01 | 1.28E-55 | 3.71E-01 | 2.71E-04 | 1.19E-02 | 5.11E-03 |
函数 | 指标 | AMBPSO | MSPSO | RPSO | EAMSPSO | MFPSO | PSO | PDORW-PSO |
---|---|---|---|---|---|---|---|---|
Mean | 8.31E-184 | 1.73E-03 | 1.30E-34 | 1.79E-60 | 1.81E-320 | 2.55E+03 | 8.60E-230 | |
Std | 3.81E-14 | 2.88E-02 | 5.61E-34 | 8.14E-59 | 8.12E-20 | 1.45E+03 | 3.61E-74 | |
Mean | 4.63E+03 | 3.13E+02 | 1.10E+02 | 2.25E+04 | 1.25E+03 | 3.95E+05 | 1.85E-03 | |
Std | 2.06E+04 | 6.95E+02 | 4.32E+02 | 2.18E+04 | 2.18E+04 | 1.12E+05 | 8.63E-02 | |
Mean | 9.46E+01 | 6.21E+01 | 2.69E+01 | 4.01E+01 | 0.00E+00 | 1.93E+02 | 0.00E+00 | |
Std | 3.28E+01 | 2.15E+01 | 1.00E+01 | 2.23E+01 | 3.11E+01 | 2.22E+01 | 1.01E+01 | |
Mean | 8.01E+03 | 1.01E+03 | 2.00E+02 | 7.98E+03 | 4.15E-99 | 1.14E+04 | 1.15E-87 | |
Std | 4.17E+03 | 1.81E+03 | 9.90E+02 | 8.01E+03 | 7.23E+03 | 5.67E+03 | 1.98E-65 | |
Mean | 1.87E+00 | 4.92E-02 | 2.34E-02 | 1.76E+05 | 1.12E-55 | 2.42E+01 | 0.00E+00 | |
Std | 7.28E+01 | 7.86E-02 | 2.25E-02 | 1.18E+01 | 1.28E+01 | 1.32E+01 | 1.01E-02 | |
Mean | 6.93E-02 | 6.01E-02 | 4.15E-03 | 1.01E-02 | 1.04E-02 | 3.11E+01 | 4.07E-05 | |
Std | 1.49E-01 | 1.88E-01 | 2.05E-02 | 2.94E-02 | 3.14E-02 | 1.12E+01 | 1.15E-04 | |
Mean | 1.03E+09 | 2.38E-02 | 2.96E-03 | 5.11E-04 | 4.00E+02 | 1.06E+05 | 1.73E-07 | |
Std | 4.01E+08 | 3.78E-02 | 3.33E-03 | 3.21E-03 | 3.21E-03 | 5.98E+04 | 1.28E-03 | |
Mean | 4.11E+02 | 1.60E-01 | 0.00E+00 | 3.89E+02 | 1.27E-04 | 2.47E+03 | 9.37E-05 | |
Std | 1.98E+02 | 5.48E-01 | 5.18E-01 | 2.01E+03 | 1.98E+03 | 1.41E+03 | 1.99E-03 |
函数 | 指标 | AMBPSO | MSPSO | RPSO | EAMSPSO | MFPSO | PSO | PDORW-PSO |
---|---|---|---|---|---|---|---|---|
Mean | 8.31E-184 | 1.73E-03 | 1.30E-34 | 1.79E-60 | 1.81E-320 | 2.55E+03 | 8.60E-230 | |
Std | 3.81E-14 | 2.88E-02 | 5.61E-34 | 8.14E-59 | 8.12E-20 | 1.45E+03 | 3.61E-74 | |
Mean | 4.63E+03 | 3.13E+02 | 1.10E+02 | 2.25E+04 | 1.25E+03 | 3.95E+05 | 1.85E-03 | |
Std | 2.06E+04 | 6.95E+02 | 4.32E+02 | 2.18E+04 | 2.18E+04 | 1.12E+05 | 8.63E-02 | |
Mean | 9.46E+01 | 6.21E+01 | 2.69E+01 | 4.01E+01 | 0.00E+00 | 1.93E+02 | 0.00E+00 | |
Std | 3.28E+01 | 2.15E+01 | 1.00E+01 | 2.23E+01 | 3.11E+01 | 2.22E+01 | 1.01E+01 | |
Mean | 8.01E+03 | 1.01E+03 | 2.00E+02 | 7.98E+03 | 4.15E-99 | 1.14E+04 | 1.15E-87 | |
Std | 4.17E+03 | 1.81E+03 | 9.90E+02 | 8.01E+03 | 7.23E+03 | 5.67E+03 | 1.98E-65 | |
Mean | 1.87E+00 | 4.92E-02 | 2.34E-02 | 1.76E+05 | 1.12E-55 | 2.42E+01 | 0.00E+00 | |
Std | 7.28E+01 | 7.86E-02 | 2.25E-02 | 1.18E+01 | 1.28E+01 | 1.32E+01 | 1.01E-02 | |
Mean | 6.93E-02 | 6.01E-02 | 4.15E-03 | 1.01E-02 | 1.04E-02 | 3.11E+01 | 4.07E-05 | |
Std | 1.49E-01 | 1.88E-01 | 2.05E-02 | 2.94E-02 | 3.14E-02 | 1.12E+01 | 1.15E-04 | |
Mean | 1.03E+09 | 2.38E-02 | 2.96E-03 | 5.11E-04 | 4.00E+02 | 1.06E+05 | 1.73E-07 | |
Std | 4.01E+08 | 3.78E-02 | 3.33E-03 | 3.21E-03 | 3.21E-03 | 5.98E+04 | 1.28E-03 | |
Mean | 4.11E+02 | 1.60E-01 | 0.00E+00 | 3.89E+02 | 1.27E-04 | 2.47E+03 | 9.37E-05 | |
Std | 1.98E+02 | 5.48E-01 | 5.18E-01 | 2.01E+03 | 1.98E+03 | 1.41E+03 | 1.99E-03 |
函数 | 指标 | PSO | PD-PSO | ORW-PSO | PDORW-PSO |
---|---|---|---|---|---|
Mean | 2.55E+03 | 9.31E-124 | 3.19E-127 | 8.60E-230 | |
Std | 1.45E+03 | 3.18E-14 | 2.28E-12 | 3.61E-74 | |
Mean | 3.95E+05 | 5.13E+00 | 3.13E+01 | 1.85E-03 | |
Std | 1.12E+05 | 2.10E+03 | 6.05E+02 | 8.63E-02 | |
Mean | 1.93E+02 | 1.21E-114 | 3.21E-109 | 0.00E+00 | |
Std | 2.22E+01 | 3.28E+01 | 2.15E+01 | 1.01E+01 | |
Mean | 1.14E+04 | 1.11E-44 | 3.21E-54 | 1.15E-87 | |
Std | 5.67E+03 | 3.17E+03 | 1.21E+03 | 1.98E-65 | |
Mean | 2.42E+01 | 1.21E-41 | 3.21E-51 | 0.00E+00 | |
Std | 1.32E+01 | 7.09E+01 | 7.26E-03 | 1.01E-02 | |
Mean | 3.11E+01 | 6.93E-02 | 6.01E-02 | 4.07E-05 | |
Std | 1.12E+01 | 1.29E-01 | 1.28E-01 | 1.15E-04 | |
Mean | 2.47E+03 | 1.19E-01 | 1.56E-02 | 1.73E-07 | |
Std | 1.41E+03 | 1.98E+02 | 5.48E-01 | 1.28E-03 | |
Mean | 1.06E+05 | 2.14E-02 | 4.28E-02 | 9.37E-05 | |
Std | 5.98E+04 | 4.11E+03 | 3.08E-02 | 1.99E-03 |
函数 | 指标 | PSO | PD-PSO | ORW-PSO | PDORW-PSO |
---|---|---|---|---|---|
Mean | 2.55E+03 | 9.31E-124 | 3.19E-127 | 8.60E-230 | |
Std | 1.45E+03 | 3.18E-14 | 2.28E-12 | 3.61E-74 | |
Mean | 3.95E+05 | 5.13E+00 | 3.13E+01 | 1.85E-03 | |
Std | 1.12E+05 | 2.10E+03 | 6.05E+02 | 8.63E-02 | |
Mean | 1.93E+02 | 1.21E-114 | 3.21E-109 | 0.00E+00 | |
Std | 2.22E+01 | 3.28E+01 | 2.15E+01 | 1.01E+01 | |
Mean | 1.14E+04 | 1.11E-44 | 3.21E-54 | 1.15E-87 | |
Std | 5.67E+03 | 3.17E+03 | 1.21E+03 | 1.98E-65 | |
Mean | 2.42E+01 | 1.21E-41 | 3.21E-51 | 0.00E+00 | |
Std | 1.32E+01 | 7.09E+01 | 7.26E-03 | 1.01E-02 | |
Mean | 3.11E+01 | 6.93E-02 | 6.01E-02 | 4.07E-05 | |
Std | 1.12E+01 | 1.29E-01 | 1.28E-01 | 1.15E-04 | |
Mean | 2.47E+03 | 1.19E-01 | 1.56E-02 | 1.73E-07 | |
Std | 1.41E+03 | 1.98E+02 | 5.48E-01 | 1.28E-03 | |
Mean | 1.06E+05 | 2.14E-02 | 4.28E-02 | 9.37E-05 | |
Std | 5.98E+04 | 4.11E+03 | 3.08E-02 | 1.99E-03 |
1 | ZHANG E, ZHANG S, YANG T, et al. Improved particle swarm optimization with less manual intervention for photonic inverse design[J]. IEEE Photonics Technology Letters, 2023, 35(24): 1355-1358. |
2 | ZHANG D, GAO Z. Fault tolerant control using reinforcement learning and particle swarm optimization[J]. IEEE Access, 2020, 8: 168802-168811. |
3 | LI P, LIU X, CHEN H, et al. Optimization of three-dimensional magnetic field in vacuum interrupter using particle swarm optimization algorithm[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): No.5000804. |
4 | LIANG Z D, YI W J. Application of improved particle swarm optimization algorithm in TDOA[J]. AIP Advances, 2022, 12(2): No.025304. |
5 | ZHANG X, ZHANG X, WU Z. Utility and fairness-based spectrum allocation of cellular networks by an adaptive particle swarm optimization algorithm[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(1): 42-50. |
6 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 IEEE International Conference on Neural Networks — Volume 4. Piscataway: IEEE, 1995: 1942-1948. |
7 | XU G. An adaptive parameter tuning of particle swarm optimization algorithm[J]. Applied Mathematics and Computation, 2013, 219(9): 4560-4569. |
8 | YAN C M, LU G Y, LIU Y T, et al. A modified PSO algorithm with exponential decay weight[C]// Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. Piscataway: IEEE, 2017: 239-242. |
9 | 徐浩天,季伟东,孙小晴,等. 基于正态分布衰减惯性权重的粒子群优化算法[J]. 深圳大学学报(理工版), 2020, 37(2): 208-213. |
10 | AGRAWAL A, TRIPATHI S. Particle swarm optimization with adaptive inertia weight based on cumulative binomial probability[J]. Evolutionary Intelligence, 2021, 14(2): 305-313. |
11 | 李伟,丁书慧,陈勋俊. 基于双种群交叉学习的粒子群优化算法[J]. 计算机应用研究, 2023, 40(11): 3254-3261. |
12 | 张强,李盼池. 一种自适应多策略行为粒子群优化算法[J]. 控制与决策, 2020, 35(1): 115-122. |
13 | 廖玮霖,程杉,尚冬冬,等. 多策略融合的粒子群优化算法[J]. 计算机工程与应用, 2021, 57(1): 69-76. |
14 | 吴大飞,杨光永,樊康生,等. 多策略融合的改进粒子群优化算法[J]. 计算机应用研究, 2022, 39(11): 3358-3364. |
15 | 王晓艳,曹德欣. 基于进化能力的多策略粒子群优化算法[J]. 计算机工程与应用, 2023, 59(5): 78-86. |
16 | LIU W, WANG Z, ZENG N, et al. A novel randomised particle swarm optimizer[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(2): 529-540. |
17 | 罗强,季伟东,徐浩天,等. 一种最优粒子逐维变异的粒子群优化算法[J]. 小型微型计算机系统, 2020, 41(2): 259-263. |
18 | 康岩松,臧顺来. 基于多种策略的改进粒子群优化算法[J]. 东北大学学报(自然科学版), 2023, 44(8): 1089-1097. |
19 | 黄洋,鲁海燕,许凯波,等. 基于S型函数的自适应粒子群优化算法[J]. 计算机科学, 2019, 46(1): 245-250. |
20 | 彭鹏,倪志伟,朱旭辉,等. 基于改进二元萤火虫群优化算法和邻域粗糙集的属性约简方法[J]. 模式识别与人工智能, 2020, 33(2): 95-105. |
21 | 王仲雨,高美凤. 基于改进鲸鱼优化算法的近红外光谱波长变量选择方法及其应用[J]. 分析测试学报, 2023, 42(1): 37-44. |
22 | WANG L, WANG Z, HAN Q L, et al. Event-based variance-constrained H∞ filtering for stochastic parameter systems over sensor networks with successive missing measurements[J]. IEEE Transactions on Cybernetics, 2018, 48(3): 1007-1017. |
23 | ZHOU Y, HAO J K, DUVAL B, et al. Opposition-based memetic search for the maximum diversity problem[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(5): 731-745. |
24 | WANG W, WANG H, SUN H, et al. Using opposition-based learning to enhance differential evolution: a comparative study[C]// Proceedings of the 2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2016: 71-77. |
25 | GAO Y, DU W, YAN G. Selectively-informed particle swarm optimization [J]. Scientific Reports, 2015, 5: No.9295. |
[1] | Suqian WU, Jianguo YAN, Bin YANG, Tao QIN, Ying LIU, Jing YANG. Multi-strategy improved Aquila optimizer and its application in path planning [J]. Journal of Computer Applications, 2025, 45(3): 937-945. |
[2] | Peigen GAO, Bin SUO. Experimental design and staged PSO-Kriging modeling based on weighted hesitant fuzzy set [J]. Journal of Computer Applications, 2024, 44(7): 2144-2150. |
[3] | Xiaoxin DU, Wei ZHOU, Hao WANG, Tianru HAO, Zhenfei WANG, Mei JIN, Jianfei ZHANG. Survey of subgroup optimization strategies for intelligent algorithms [J]. Journal of Computer Applications, 2024, 44(3): 819-830. |
[4] | Zhen WANG, Shanshan ZHANG, Binyang WU, Wanhua SU. Optimization strategy of tandem composite turbine energy storage based on self-adaptive particle swarm optimization algorithm [J]. Journal of Computer Applications, 2024, 44(2): 611-618. |
[5] | Dahai LI, Meixin ZHAN, Zhendong WANG. Enhanced sparrow search algorithm based on multiple improvement strategies [J]. Journal of Computer Applications, 2023, 43(9): 2845-2854. |
[6] | Jingyi WANG, Chao LI, Heng SONG, Di LI, Junwu ZHU. Spectrum combinatorial auction mechanism based on random walk algorithm [J]. Journal of Computer Applications, 2023, 43(8): 2352-2357. |
[7] | Jun LIANG, Zehong HONG, Songsen YU. Image segmentation model based on improved particle swarm optimization algorithm and genetic mutation [J]. Journal of Computer Applications, 2023, 43(6): 1743-1749. |
[8] | Zhongping ZHANG, Xin GUO, Yuting ZHANG, Ruibo ZHANG. Outlier detection algorithm based on hologram stationary distribution factor [J]. Journal of Computer Applications, 2023, 43(6): 1705-1712. |
[9] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[10] | Zhenhua YU, Zhengqi LIU, Ying LIU, Cheng GUO. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction [J]. Journal of Computer Applications, 2023, 43(4): 1206-1213. |
[11] | Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling [J]. Journal of Computer Applications, 2023, 43(2): 474-483. |
[12] | Chunfeng LIU, Zheng LI, Jufeng WANG. Multi-objective optimization of minicells in distributed factories [J]. Journal of Computer Applications, 2023, 43(12): 3824-3832. |
[13] | Le ZHOU, Tingting DAI, Chun LI, Jun XIE, Boce CHU, Feng LI, Junyi ZHANG, Qiao LIU. Network representation learning model based on node attribute bipartite graph [J]. Journal of Computer Applications, 2022, 42(8): 2311-2318. |
[14] | Rongli GAI, Shouchuan GAO, Mingxia LI. Non-uniform rational B spline curve fitting of particle swarm optimization algorithm solving optimal control points [J]. Journal of Computer Applications, 2022, 42(7): 2177-2183. |
[15] | Bing GAO, Ya ZHENG, Jing QIN, Qijie ZOU, Zumin WANG. Network intrusion detection algorithm based on sparrow search algorithm and improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(4): 1201-1206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||