Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3947-3956.DOI: 10.11772/j.issn.1001-9081.2024111677
• Network and communications • Previous Articles Next Articles
Xiang KUANG1, Zhen MA2,3(
), Wanchun ZHU1, Zhi ZHANG1, Yunfei CUI1
Received:2024-11-29
Revised:2025-03-29
Accepted:2025-03-31
Online:2025-04-08
Published:2025-12-10
Contact:
Zhen MA
About author:KUANG Xiang, born in 1991, lecturer. His research interests include network optimization,deep learning, system maintenance.Supported by:通讯作者:
马震
作者简介:况翔(1991—),男,贵州赫章人,讲师,主要研究方向:网络优化、深度学习、系统运维基金资助:CLC Number:
Xiang KUANG, Zhen MA, Wanchun ZHU, Zhi ZHANG, Yunfei CUI. Secure and reliable service function chain deployment based on encoder-decoder structured reinforcement learning[J]. Journal of Computer Applications, 2025, 45(12): 3947-3956.
况翔, 马震, 朱万春, 张智, 崔云飞. 基于编解码结构强化学习的安全可靠服务功能链部署[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3947-3956.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111677
| 符号 | 含义 | 符号 | 含义 |
|---|---|---|---|
| 物理网络p加权图 | SFC请求 | ||
| 网络节点集合 | 物理/SFC请求节点 | ||
| 网络链接集合 | 物理/SFC请求 | ||
| 物理节点 | SFC请求节点ni 资源 | ||
| 物理节点安全等级 | SFC请求 等级 | ||
| SFC请求i的时延 | 节点资源集合 |
Tab. 1 Explanation of main symbols
| 符号 | 含义 | 符号 | 含义 |
|---|---|---|---|
| 物理网络p加权图 | SFC请求 | ||
| 网络节点集合 | 物理/SFC请求节点 | ||
| 网络链接集合 | 物理/SFC请求 | ||
| 物理节点 | SFC请求节点ni 资源 | ||
| 物理节点安全等级 | SFC请求 等级 | ||
| SFC请求i的时延 | 节点资源集合 |
| 仿真参数 | 设置值 | 仿真参数 | 设置值 |
|---|---|---|---|
| 批量大小 | 128 | 奖励系数 | 0.125 |
| 资源的单价 | 0.001 | 折扣因子 | 0.93 |
| 带宽的单价 | 0.001 | 演员网络学习能力 | 0.000 25 |
| 演员网络数 | 4 | 评论家网络学习能力 | 0.000 5 |
Tab.2 Training parameter setting of ED-DRL
| 仿真参数 | 设置值 | 仿真参数 | 设置值 |
|---|---|---|---|
| 批量大小 | 128 | 奖励系数 | 0.125 |
| 资源的单价 | 0.001 | 折扣因子 | 0.93 |
| 带宽的单价 | 0.001 | 演员网络学习能力 | 0.000 25 |
| 演员网络数 | 4 | 评论家网络学习能力 | 0.000 5 |
| [1] | 乔文欣,卢昱,刘益岑,等. 空天地协同的边缘云服务功能链动态编排方法[J]. 西安电子科技大学学报, 2022, 49(2): 79-88. |
| QIAO W X, LU Y, LIU Y C, et al. Dynamic scheduling method for service function chains in space air terrestrial aided edge cloud networks[J]. Journal of Xidian University, 2022, 49(2): 79-88. | |
| [2] | ZHUANG W, YE Q, LYU F, et al. SDN/NFV-empowered future IoV with enhanced communication, computing, and caching[J]. Proceedings of the IEEE, 2020, 108(2): 274-291. |
| [3] | 畅海峰,嵩天,杨雅婷. NFV中单节点启发式资源分配方法[J]. 计算机工程与应用, 2020, 56(11): 105-111. |
| CHANG H F, SONG T, YANG Y T. Heuristic method of resource allocation on single node in NFV[J]. Computer Engineering and Applications, 2020, 56(11): 105-111. | |
| [4] | YAO H, MA S, WANG J, et al. A continuous-decision virtual network embedding scheme relying on reinforcement learning[J]. IEEE Transactions on Network and Service Management, 2020, 17(2): 864-875. |
| [5] | FISCHER A, BOTERO J F, BECK M T, et al. Virtual network embedding: a survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(4): 1888-1906. |
| [6] | YANG L, ZHANG Y, ZHENG G, et al. Policy optimization with stochastic mirror descent[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 8823-8831. |
| [7] | 梁俊斌,黄少东,吴旭,等. 绿色移动边缘网络中可靠的虚拟网络功能部署技术研究[J]. 计算机应用研究, 2023, 40(12): 3521-3528, 3538. |
| LIANG J B, HUANG S D, WU X, et al. Research on reliable virtual network function deployment technology mobile edge networks[J]. Application Research of Computers, 2023, 40(12): 3521-3528, 3538. | |
| [8] | ZHU Y, AMMAR M. Algorithms for assigning substrate network resources to virtual network components[C]// Proceedings of the 25th IEEE International Conference on Computer Communications. Piscataway: IEEE, 2006: 1-12. |
| [9] | 许道强,邹云峰,邓君华,等. 面向NUMA架构的虚拟网络功能部署技术研究[J]. 计算机工程与应用, 2019, 55(21): 115-121, 157. |
| XU D Q, ZOU Y F, DENG J H, et al. Research on virtual network function chain deployment for NUMAS systems[J]. Computer Engineering and Applications, 2019, 55(21): 115-121, 157. | |
| [10] | CAO H, YANG L, LIU Z, et al. Exact solutions of VNE: a survey[J]. China Communications, 2016, 13(6): 48-62. |
| [11] | SUN Q, LU P, LU W, et al. Forecast-assisted NFV service chain deployment based on affiliation-aware vNF placement[C]// Proceedings of the 2016 IEEE Global Communications Conference. Piscataway: IEEE, 2016: 1-6. |
| [12] | YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29. |
| [13] | CHENG X, SU S, ZHANG Z, et al. Virtual network embedding through topology-aware node ranking[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(2): 38-47. |
| [14] | JIN P, FEI X, ZHANG Q, et al. Latency-aware VNF chain deployment with efficient resource reuse at network edge[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 267-276. |
| [15] | FAN W, XIAO F, LV M, et al. Node essentiality assessment and distributed collaborative virtual network embedding in datacenters[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(4): 1265-1280. |
| [16] | ZHANG P, YAO H, LIU Y. Virtual network embedding based on computing, network, and storage resource constraints[J]. IEEE Internet of Things Journal, 2018, 5(5): 3298-3304. |
| [17] | DEHURY C K, SAHOO P K. DYVINE: fitness-based dynamic virtual network embedding in cloud computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1029-1045. |
| [18] | XIAO Y, ZHANG Q, LIU F, et al. NFVdeep: adaptive online service function chain deployment with deep reinforcement learning[C]// Proceedings of the IEEE/ACM 27th International Symposium on Quality of Service. New York: ACM, 2019: No.21. |
| [19] | 王晓,唐伦,贺小雨,等. 基于深度强化学习的服务功能链多维资源优化[J]. 计算机工程与应用, 2021, 57(4): 68-76. |
| WANG X, TANG L, HE X Y, et al. Multi-dimensional resource optimization of service function chain based on deep reinforcement learning[J]. Computer Engineering and Applications, 2021, 57(4): 68-76. | |
| [20] | SOLOZABAL R, CEBERIO J, SANCHOYERTO A, et al. Virtual network function placement optimization with deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(2): 292-303. |
| [21] | WANG T, FAN Q, LI X, et al. DRL-SFCP: adaptive service function chains placement with deep reinforcement learning[C]// Proceedings of the 2021 IEEE International Conference on Communications. Piscataway: IEEE, 2021: 1-6. |
| [22] | ZHANG P, SU Y, WANG J, et al. Reinforcement learning assisted bandwidth aware virtual network resource allocation[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4111-4123. |
| [23] | ZHANG X, CUI L, TSO F P, et al. Dapper: deploying service function chains in the programmable data plane via deep reinforcement learning[J]. IEEE Transactions on Services Computing, 2023, 16(4): 2532-2544. |
| [24] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-11-11]. . |
| [25] | MNIH V M, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1928-1937. |
| [26] | 朱子怡,张建辉,曾俊杰,等. 基于深度强化学习的安全感知服务功能链部署方法[J/OL]. 计算机科学 [2024-11-23].. |
| ZHU Z Y, ZHANG J H, ZENG J J, et al. Security-aware service function chain deployment method based on deep reinforcement learning [J/OL]. Computer Science [2024-11-23].. | |
| [27] | ZENG J, DING D, KANG K, et al. Adaptive DRL-based virtual machine consolidation in energy-efficient cloud data center[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(11): 2991-3002. |
| [28] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-11-11]. . |
| [29] | HE N, YANG S, LI F, et al. Leveraging deep reinforcement learning with attention mechanism for virtual network function placement and routing[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(4): 1186-1201. |
| [30] | WAXMAN B M. Routing of multipoint connections[J]. IEEE Journal on Selected Areas in Communications, 1988, 6(9): 1617-1622. |
| [31] | GONG L, WEN Y, ZHU Z, et al. Toward profit-seeking virtual network embedding algorithm via global resource capacity[C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: IEEE, 2014: 1-9. |
| [1] | Kaile YU, Jiajun LIAO, Jiali MAO, Xiaopeng HUANG. Multi-objective optimization of steel logistics vehicle-cargo matching under multiple constraints [J]. Journal of Computer Applications, 2025, 45(8): 2477-2483. |
| [2] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [3] | Tianyu XUE, Aiping LI, Liguo DUAN. Vehicular edge computing scheme with task offloading and resource optimization [J]. Journal of Computer Applications, 2025, 45(6): 1766-1775. |
| [4] | Pengcheng XU, Lei HE, Chuan LI, Weiqi QIAN, Tun ZHAO. Deep symbolic regression method based on Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1455-1463. |
| [5] | Jiaxin LI, Site MO. Power work order classification in substation area based on MiniRBT-LSTM-GAT and label smoothing [J]. Journal of Computer Applications, 2025, 45(4): 1356-1362. |
| [6] | Jing WANG, Xuming FANG. Intelligent joint power and channel allocation algorithm for Wi-Fi7 multi-link integrated communication and sensing [J]. Journal of Computer Applications, 2025, 45(2): 563-570. |
| [7] | Huahua WANG, Liang HUANG, Jiajie CHEN, Jiening FANG. Dynamic allocation algorithm for multi-beam subcarriers of low orbit satellites based on deep reinforcement learning [J]. Journal of Computer Applications, 2025, 45(2): 571-577. |
| [8] | Chengyi WANG, Lei XU, Jinyin CHEN, Hongjun QIU. Cyber anti-mapping method based on adaptive perturbation [J]. Journal of Computer Applications, 2025, 45(12): 3896-3908. |
| [9] | Xiaojuan CHEN, Wei ZHANG. Task allocation of unmanned aerial vehicle for rural last-mile delivery based on reinforcement learning [J]. Journal of Computer Applications, 2025, 45(12): 4055-4063. |
| [10] | Jun ZENG, Yinghua TONG, Defang WANG. Anomaly detection method based on cumulative probability fluctuation and automated clustering [J]. Journal of Computer Applications, 2025, 45(12): 3864-3871. |
| [11] | Haoxiang XU, Dunhui YU, Yichen DENG, Kui XIAO. Knowledge graph constrained question answering model based on hierarchical reinforcement learning [J]. Journal of Computer Applications, 2025, 45(12): 3764-3770. |
| [12] | Lin WEI, Shihao ZHANG, Mengyang HE. Workflow task optimization and energy-efficient offloading method for computing power network [J]. Journal of Computer Applications, 2025, 45(12): 3916-3924. |
| [13] | Lin WEI, Jinyang LI, Yajie WANG, Mengyang HE. Highly reliable matching method based on multi-dimensional resource measurement and rescheduling in computing power network [J]. Journal of Computer Applications, 2025, 45(11): 3632-3641. |
| [14] | Jinghua ZHAO, Zhu ZHANG, Xiting LYU, Huidan LIN. Multiscale information diffusion prediction model based on hypergraph neural network [J]. Journal of Computer Applications, 2025, 45(11): 3529-3539. |
| [15] | Maozu GUO, Zheng CUI, Lingling ZHAO, Qingyu ZHANG. Frequency domain attention-based method for structural seismic response prediction [J]. Journal of Computer Applications, 2025, 45(11): 3730-3738. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||