| [1] |
PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys, 2022, 54(2): No.38.
|
| [2] |
WANG H, BAH M J, HAMMAD M. Progress in outlier detection techniques: a survey [J]. IEEE Access, 2019, 7: 107964-108000.
|
| [3] |
ILEBERI E, SUN Y, WANG Z. A machine learning based credit card fraud detection using the GA algorithm for feature selection[J]. Journal of Big Data, 2022, 9: No.24.
|
| [4] |
SULAIMAN R BIN, SCHETININ V, SANT P. Review of machine learning approach on credit card fraud detection[J]. Human-Centric Intelligent Systems, 2022, 2(1/2): 55-68.
|
| [5] |
HE M, WANG X, WEI P, et al. Reinforcement learning meets network intrusion detection: a transferable and adaptable framework for anomaly behavior identification[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2477-2492.
|
| [6] |
LI M M, HUANG K, ZITNIK M. Graph representation learning in biomedicine and healthcare[J]. Nature Biomedical Engineering, 2022, 6(12): 1353-1369.
|
| [7] |
FERNANDO T, GAMMULLE H, DENMAN S, et al. Deep learning for medical anomaly detection: a survey[J]. ACM Computing Surveys, 2022, 54(7): No.141.
|
| [8] |
ZAHEER M Z, MAHMOOD A, KHAN M H, et al. Generative cooperative learning for unsupervised video anomaly detection [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14724-14734.
|
| [9] |
XU R, GUO Y, HAN X, et al. OpenCDA: an open cooperative driving automation framework integrated with co-simulation[C]// Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Piscataway: IEEE, 2021: 1155-1162.
|
| [10] |
YANG L, CHEN J, GAO S, et al. Try with simpler: an evaluation of improved principal component analysis in log-based anomaly detection [J]. ACM Transactions on Software Engineering and Methodology, 2024, 33(5): No.115.
|
| [11] |
QIAO Y, WU K, JIN P. Efficient anomaly detection for high-dimensional sensing data with one-class support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 404-417.
|
| [12] |
BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data [EB/OL]. [2024-05-05]. .
|
| [13] |
MAO J, HU Y, JIANG D, et al. CBFS: a clustering-based feature selection mechanism for network anomaly detection[J]. IEEE Access, 2020, 8: 116216-116225.
|
| [14] |
CHADHA G S, ISLAM I, SCHWUNG A, et al. Deep convolutional clustering-based time series anomaly detection [J]. Sensors, 2021, 21(16): No.5488.
|
| [15] |
YANG X, LATECKI L J, POKRAJAC D. Outlier detection with globally optimal exemplar based GMM [C]// Proceedings of the 2009 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2009: 145-154.
|
| [16] |
ZHANG R, PENG H, DOU Y, et al. Automating DBSCAN via deep reinforcement learning [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 2620-2630.
|
| [17] |
SOYDANER D. Attention mechanism in neural networks: where it comes and where it goes [J]. Neural Computing and Applications, 2022, 34(16): 13371-13385.
|
| [18] |
LI Z, ZHAO Y, HU X, et al. ECOD: unsupervised outlier detection using empirical cumulative distribution functions[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12181-12193.
|
| [19] |
GOODGE A, HOOI B, NG S K, et al. LUNAR: unifying local outlier detection methods via graph neural networks[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 6737-6745.
|
| [20] |
PANG J, PU X, LI C. A hybrid algorithm incorporating vector quantization and one-class support vector machine for industrial anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8786-8796.
|
| [21] |
HE Z, XU X, DENG S. Discovering cluster-based local outliers[J]. Pattern Recognition Letters, 2003, 24(9/10): 1641-1650.
|
| [22] |
XU H, PANG G, WANG Y, et al. Deep isolation forest for anomaly detection [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12591-12604.
|