Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3957-3963.DOI: 10.11772/j.issn.1001-9081.2024111617
• Multimedia computing and computer simulation • Previous Articles Next Articles
Weigang LI1,2, Dong WANG1, Yongqiang WANG2, Jinling LI2
Received:2024-11-14
Revised:2025-03-03
Accepted:2025-03-04
Online:2025-03-21
Published:2025-12-10
Contact:
Dong WANG
About author:LI Weigang, born in 1977, Ph. D., professor. His research interests include industrial process control, artificial intelligence, machine learning.Supported by:李维刚1,2, 王栋1, 王永强2, 李金灵2
通讯作者:
王栋
作者简介:李维刚(1977—),男,湖北咸宁人,教授,博士,主要研究方向:工业过程控制、人工智能、机器学习基金资助:CLC Number:
Weigang LI, Dong WANG, Yongqiang WANG, Jinling LI. Point cloud filtering based on adaptive feature extraction and feature fusion[J]. Journal of Computer Applications, 2025, 45(12): 3957-3963.
李维刚, 王栋, 王永强, 李金灵. 基于自适应特征提取和特征融合的点云滤波[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3957-3963.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111617
| 滤波网络 | Boxunion | Cube | Fandisk | Tetrahedron | 平均 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | |
| Noise | 3.766 | 5.886 | 4.406 | 5.869 | 4.392 | 5.846 | 3.722 | 5.874 | 3.872 | 5.869 |
| DMRDenoise | 2.262 | 5.168 | 2.843 | 4.991 | 1.774 | 5.243 | 1.850 | 5.198 | 2.182 | 5.150 |
| PCN | 1.275 | 4.450 | 1.648 | 4.147 | 0.958 | 4.103 | 0.997 | 4.227 | 1.220 | 4.232 |
| TDNet | 1.235 | 4.397 | 1.408 | 4.127 | 0.848 | 4.276 | 0.972 | 4.211 | 1.116 | 4.253 |
| PD-Flow | 1.119 | 4.481 | 1.467 | 4.114 | 0.893 | 4.253 | 0.941 | 4.187 | 1.105 | 4.259 |
| Pointfilter | 0.987 | 4.341 | 1.335 | 4.042 | 0.774 | 4.211 | 0.807 | 4.166 | 0.967 | 4.190 |
| PFRNet | 0.899 | 4.168 | 1.236 | 3.881 | 0.700 | 4.007 | 0.746 | 3.932 | 0.895 | 3.981 |
Tab. 1 Filtering performance of each network with noise parameter of 0.5%
| 滤波网络 | Boxunion | Cube | Fandisk | Tetrahedron | 平均 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | |
| Noise | 3.766 | 5.886 | 4.406 | 5.869 | 4.392 | 5.846 | 3.722 | 5.874 | 3.872 | 5.869 |
| DMRDenoise | 2.262 | 5.168 | 2.843 | 4.991 | 1.774 | 5.243 | 1.850 | 5.198 | 2.182 | 5.150 |
| PCN | 1.275 | 4.450 | 1.648 | 4.147 | 0.958 | 4.103 | 0.997 | 4.227 | 1.220 | 4.232 |
| TDNet | 1.235 | 4.397 | 1.408 | 4.127 | 0.848 | 4.276 | 0.972 | 4.211 | 1.116 | 4.253 |
| PD-Flow | 1.119 | 4.481 | 1.467 | 4.114 | 0.893 | 4.253 | 0.941 | 4.187 | 1.105 | 4.259 |
| Pointfilter | 0.987 | 4.341 | 1.335 | 4.042 | 0.774 | 4.211 | 0.807 | 4.166 | 0.967 | 4.190 |
| PFRNet | 0.899 | 4.168 | 1.236 | 3.881 | 0.700 | 4.007 | 0.746 | 3.932 | 0.895 | 3.981 |
| 网络 | 噪声等级为0.5% | 噪声等级为1.0% | 噪声等级为1.5% | 噪声等级为2.5% | ||||
|---|---|---|---|---|---|---|---|---|
| CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | |
| DMRDenoise | 2.19 | 5.15 | 3.16 | 21.78 | 4.69 | 47.42 | 17.42 | 134.26 |
| PCN | 1.22 | 4.23 | 1.71 | 17.18 | 2.62 | 38.97 | 12.74 | 110.31 |
| TDNet | 1.12 | 4.25 | 1.58 | 17.14 | 2.41 | 39.16 | 10.90 | 113.86 |
| PD-FLow | 1.11 | 4.26 | 1.55 | 17.16 | 2.38 | 40.11 | 10.71 | 114.01 |
| Pointfilter | 0.98 | 4.19 | 1.42 | 16.98 | 2.08 | 38.58 | 8.76 | 112.21 |
| PFRNet | 0.89 | 3.98 | 1.25 | 16.04 | 1.82 | 36.66 | 8.14 | 103.77 |
Tab. 2 Filtering results of different networks under different noise levels
| 网络 | 噪声等级为0.5% | 噪声等级为1.0% | 噪声等级为1.5% | 噪声等级为2.5% | ||||
|---|---|---|---|---|---|---|---|---|
| CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | CD/10-5 | MSE/10-3 | |
| DMRDenoise | 2.19 | 5.15 | 3.16 | 21.78 | 4.69 | 47.42 | 17.42 | 134.26 |
| PCN | 1.22 | 4.23 | 1.71 | 17.18 | 2.62 | 38.97 | 12.74 | 110.31 |
| TDNet | 1.12 | 4.25 | 1.58 | 17.14 | 2.41 | 39.16 | 10.90 | 113.86 |
| PD-FLow | 1.11 | 4.26 | 1.55 | 17.16 | 2.38 | 40.11 | 10.71 | 114.01 |
| Pointfilter | 0.98 | 4.19 | 1.42 | 16.98 | 2.08 | 38.58 | 8.76 | 112.21 |
| PFRNet | 0.89 | 3.98 | 1.25 | 16.04 | 1.82 | 36.66 | 8.14 | 103.77 |
| 组序 | 具体操作 | CD-Avg/10-5 |
|---|---|---|
| A | 代替VDGENet为PointNet | 0.974 |
| B | 不使用局部特征正则化融合 | 0.977 |
| C | 不使用自相关注意力模块 | 0.901 |
| D | 全部使用 | 0.895 |
Tab. 3 Results of ablation experiments
| 组序 | 具体操作 | CD-Avg/10-5 |
|---|---|---|
| A | 代替VDGENet为PointNet | 0.974 |
| B | 不使用局部特征正则化融合 | 0.977 |
| C | 不使用自相关注意力模块 | 0.901 |
| D | 全部使用 | 0.895 |
| 网络 | Params/106 | FLOPs/109 | CD/10-5 |
|---|---|---|---|
| TDNet | 10.356 | 3.833 | 1.116 |
| PCN | 6.843 | 14.696 | 1.220 |
| PD-FLow | 14.746 | 9.276 | 1.105 |
| Pointfilter | 20.441 | 2.550 | 0.967 |
| PFRNet | 23.530 | 3.081 | 0.895 |
Tab. 4 Comparison of Params and FLOPs among different networks
| 网络 | Params/106 | FLOPs/109 | CD/10-5 |
|---|---|---|---|
| TDNet | 10.356 | 3.833 | 1.116 |
| PCN | 6.843 | 14.696 | 1.220 |
| PD-FLow | 14.746 | 9.276 | 1.105 |
| Pointfilter | 20.441 | 2.550 | 0.967 |
| PFRNet | 23.530 | 3.081 | 0.895 |
| [1] | 欧阳仕晗, 刘振宇, 赵怡巍, 等. 移动机器人三维激光 SLAM 算法研究[J]. 微处理机, 2020, 41(5): 58-64. |
| OUYANG S H, LIU Z Y, ZHAO Y W, et al. Research on 3D laser SLAM algorithm for mobile robot [J]. Microprocessor, 2020, 41(5): 58-64. | |
| [2] | WEI M, CHEN H, ZHANG Y, et al. et al. GeoDualCNN: Geometry-supporting dual convolutional neural network for noisy point clouds[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 29(2): 1357-1370. |
| [3] | 陈慧娴, 吴一全, 张耀. 基于深度学习的三维点云分析方法研究进展[J]. 仪器仪表学报, 2023, 44(11): 130-158. |
| CHEN H X, WU Y Q, ZHANG Y. Research progress of 3D point cloud analysis method based on deep learning[J]. Chinese Journal of Scientific Instrument, 2023, 44(11): 130-158. | |
| [4] | ROVERI R, ÖZTIRELI A C, PANDELE I, et al. PointProNets: consolidation of point clouds with convolutional neural networks [J].Computer Graphics Forum,2018,37(2):87-99. |
| [5] | HERMOSILLA P, RITSCHEL T, ROPINSKI T. Total denoising: unsupervised learning of 3D point cloud cleaning [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 52-60. |
| [6] | RAKOTOSAONA M J, LA BARBERA V, GUERRERO P, et al. PointCleanNet: learning to denoise and remove outliers from dense point clouds [J].Computer Graphics Forum,2020,39(1):185-203. |
| [7] | ZHANG D, LU X, QIN H, et al. Pointfilter: point cloud filtering via encoder-decoder modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 27(3): 2015-2027. |
| [8] | XU X, GENG G, CAO X, et al. TDNet: Transformer-based network for point cloud denoising[J]. Applied Optics, 2022, 61(6): C80-C88. |
| [9] | MAO A, DU Z, WEN Y H, et al. PD-Flow: a point cloud denoising framework with normalizing flows [C]// Proceedings of the 2022 European Conference on Computer Vision. Cham: Springer, 2022: 398-415. |
| [10] | HERMOSILLA P, RITSCHEL T, VAZQUEZ P P, et al. Monte Carlo convolution for learning on non-uniformly sampled point clouds[J]. ACM Transactions On Graphics (TOG), 2018, 37(6): 1-12. |
| [11] | GUERRERO P, KLEIMAN Y, OVSJANIKOV M, et al. PCPNet learning local shape properties from raw point clouds [J].Computer Graphics Forum,2018,37(2):75-85. |
| [12] | CHEN H, ZHAO J. 3D Mesh classification and panoramic image segmentation using spherical vector networks with rotation-equivariant self-attention mechanism[J]. Journal of King Saud University Computer and Information Sciences, 2023, 35(5): 101546. |
| [13] | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions On Graphics (TOG), 2019, 38(5): 1-12. |
| [14] | SINGHAL P, WALAMBE R, RAMANNA S, et al. Domain adaptation: challenges, methods, datasets, and applications [J]. IEEE Access, 2023, 11: 6973-7020. |
| [15] | LI X, LI M, YAN P, et al. Deep learning attention mechanism in medical image analysis: basics and beyonds[J]. International Journal of Network Dynamics and Intelligence, 2023, 2(1): 93-116. |
| [16] | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 652-660. |
| [17] | LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1449-1457. |
| [18] | BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 2559-2566. |
| [19] | YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]// Proceedings of the 2021 International Conference on Machine Learning. Cham: Springer, 2021: 11863-11874. |
| [20] | LUO S, HU W. Differentiable manifold reconstruction for point cloud denoising[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1330-1338. |
| [1] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [2] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [3] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [4] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [5] | Fang WANG, Jing HU, Rui ZHANG, Wenting FAN. Medical image segmentation network with content-guided multi-angle feature fusion [J]. Journal of Computer Applications, 2025, 45(9): 3017-3025. |
| [6] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
| [7] | Yimeng XI, Zhen DENG, Qian LIU, Libo LIU. Cross-modal information fusion for video-text retrieval [J]. Journal of Computer Applications, 2025, 45(8): 2448-2456. |
| [8] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [9] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [10] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [11] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
| [12] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [13] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
| [14] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
| [15] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||