Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3872-3880.DOI: 10.11772/j.issn.1001-9081.2024121837
• Cyber security • Previous Articles Next Articles
Jingfeng WEI1, Zhongyuan YAO1, Shuosen MA1, Chao WANG2, Shangkun GUO2, Ziqiang ZHU2, Xueming SI3
Received:2025-01-14
Revised:2025-02-24
Accepted:2025-03-14
Online:2025-11-06
Published:2025-12-10
Contact:
Zhongyuan YAO
About author:WEI Jingfeng, born in 1999, M. S. candidate. His research interests include cryptology, blockchain.Supported by:魏境烽1, 姚中原1, 马硕森1, 王超2, 郭尚坤2, 朱自强2, 斯雪明3
通讯作者:
姚中原
作者简介:魏境烽(1999—),男,河南驻马店人,硕士研究生,主要研究方向:密码学、区块链基金资助:CLC Number:
Jingfeng WEI, Zhongyuan YAO, Shuosen MA, Chao WANG, Shangkun GUO, Ziqiang ZHU, Xueming SI. Review of blockchain technology applications in carbon emission trading system[J]. Journal of Computer Applications, 2025, 45(12): 3872-3880.
魏境烽, 姚中原, 马硕森, 王超, 郭尚坤, 朱自强, 斯雪明. 区块链技术在碳排放交易系统中的应用综述[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3872-3880.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121837
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | CET | 区块链与IoT | IoT采集实时排放数据,区块链存储 确保透明性 | 解决传统碳交易透明度和追溯性不足的问题,智能合约优化 交易和合规性管理 |
| [ | CET | 分层区块链 | 上层追踪管理配额分配,下层采集验证 排放数据 | 解决传统碳交易中透明度不足的问题,支持自动化交易, 提升管理效率 |
| [ | 碳排放检测 | 区块链与IoT | 传感器实时采集数据,智能合约触发 合规警报 | 碳排放监测系统,实现数据透明化与可追溯性,为碳交易提供 支持 |
| [ | 碳积分交易 | 区块链 | 智能合约实现碳积分的追踪与 交易自动化 | 解决碳积分囤积和透明度不足的问题,简化操作流程,提升 交易效率 |
| [ | 碳排放检测 | 区块链与IoT | FISCO bcos验证存储交易,智能合约 分析更新 | 碳排放监测与积分交易框架,多层架构优化监测与交易性能 |
| [ | 碳排放管理 | 区块链与IoT | 传感器监测碳排放数据,区块链存储 数据与交易 | 碳积分交易的解决方案,提升交易系统的安全性与信任度 |
| [ | 碳核查管理 | 区块链与 电力数据 | 自动化核查碳排放量,支持多方协作与 信任 | 电碳协作平台,解决现有碳核查效率低的问题,支持政府监管和碳市场发展 |
| [ | 碳数据管理与 交易 | 区块链与 数学模型 | 碳源追溯与排放建模,避免数据重复或 不一致问题 | 提出分布式碳交易机制,解决绿色能源交易与数据管理中的 核心挑战 |
Tab. 1 Applications of blockchain and IoT in carbon emission management and detection
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | CET | 区块链与IoT | IoT采集实时排放数据,区块链存储 确保透明性 | 解决传统碳交易透明度和追溯性不足的问题,智能合约优化 交易和合规性管理 |
| [ | CET | 分层区块链 | 上层追踪管理配额分配,下层采集验证 排放数据 | 解决传统碳交易中透明度不足的问题,支持自动化交易, 提升管理效率 |
| [ | 碳排放检测 | 区块链与IoT | 传感器实时采集数据,智能合约触发 合规警报 | 碳排放监测系统,实现数据透明化与可追溯性,为碳交易提供 支持 |
| [ | 碳积分交易 | 区块链 | 智能合约实现碳积分的追踪与 交易自动化 | 解决碳积分囤积和透明度不足的问题,简化操作流程,提升 交易效率 |
| [ | 碳排放检测 | 区块链与IoT | FISCO bcos验证存储交易,智能合约 分析更新 | 碳排放监测与积分交易框架,多层架构优化监测与交易性能 |
| [ | 碳排放管理 | 区块链与IoT | 传感器监测碳排放数据,区块链存储 数据与交易 | 碳积分交易的解决方案,提升交易系统的安全性与信任度 |
| [ | 碳核查管理 | 区块链与 电力数据 | 自动化核查碳排放量,支持多方协作与 信任 | 电碳协作平台,解决现有碳核查效率低的问题,支持政府监管和碳市场发展 |
| [ | 碳数据管理与 交易 | 区块链与 数学模型 | 碳源追溯与排放建模,避免数据重复或 不一致问题 | 提出分布式碳交易机制,解决绿色能源交易与数据管理中的 核心挑战 |
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | 能源与碳交易 | 区块链+点对点交易 | 实现去中心化交易,多重签名保证 安全性和隐私保护 | 能源与碳交易的去中心化方案,减少成本和碳排放, 提高透明度与安全性 |
| [ | CET | 区块链+空间分析技术 | 减少地理位置重叠引发的双重计数, 提升数据精确度 | 结合区块链与空间分析技术,解决碳排放数据 双重计数风险 |
| [ | 碳排放验证 | 区块链+逆向拍卖 | 私链+联盟链确保数据可追溯, 逆向拍卖优化招标流程 | 碳排放核查机制,降低核查成本,提升核查效率和 数据安全性 |
| [ | 碳积分交易 | 低代码开发 | 低代码平台简化开发过程,实现 碳积分的买卖与追踪 | 低成本的碳信用交易平台,降低开发门槛,促进 低碳解决方案应用 |
| [ | 能源与碳交易 | 区块链+点对点交易 | 智能合约支持碳配额的买卖,解决 双重支付问题 | 点对点碳交易框架,优化交易成本与碳排放,适应 未来低碳技术投资需求 |
| [ | 碳配额交易 | 智能合约 | 时间戳与非对称加密技术确保 交易安全性与透明度 | 构建分布式碳排放权交易市场模型,支持新能源发展与 碳减排目标实现 |
| [ | 绿证与 碳交易市场 | 共识算法 | 利用PoCT共识算法,联合激励 减排行为 | 绿证与碳交易联合机制,提升碳减排效率,缓解 财政补贴压力 |
| [ | 分布式CET | 声誉系统+智能合约 | 基于声誉的共识机制(DPoR), 提升交易效率 | 分布式碳交易系统,优化节点一致性与恶意行为防护, 为碳交易提供高效安全的解决方案 |
| [ | CET体系 | 区块链+声誉系统 | 声誉系统激励长期减排,智能合约 自动执行交易规则 | 改进ETS的模型,提高交易公平性和效率,为碳市场提供 长期有效的解决方案 |
Tab. 2 Decentralized mechanism and innovative application of blockchain in CET
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | 能源与碳交易 | 区块链+点对点交易 | 实现去中心化交易,多重签名保证 安全性和隐私保护 | 能源与碳交易的去中心化方案,减少成本和碳排放, 提高透明度与安全性 |
| [ | CET | 区块链+空间分析技术 | 减少地理位置重叠引发的双重计数, 提升数据精确度 | 结合区块链与空间分析技术,解决碳排放数据 双重计数风险 |
| [ | 碳排放验证 | 区块链+逆向拍卖 | 私链+联盟链确保数据可追溯, 逆向拍卖优化招标流程 | 碳排放核查机制,降低核查成本,提升核查效率和 数据安全性 |
| [ | 碳积分交易 | 低代码开发 | 低代码平台简化开发过程,实现 碳积分的买卖与追踪 | 低成本的碳信用交易平台,降低开发门槛,促进 低碳解决方案应用 |
| [ | 能源与碳交易 | 区块链+点对点交易 | 智能合约支持碳配额的买卖,解决 双重支付问题 | 点对点碳交易框架,优化交易成本与碳排放,适应 未来低碳技术投资需求 |
| [ | 碳配额交易 | 智能合约 | 时间戳与非对称加密技术确保 交易安全性与透明度 | 构建分布式碳排放权交易市场模型,支持新能源发展与 碳减排目标实现 |
| [ | 绿证与 碳交易市场 | 共识算法 | 利用PoCT共识算法,联合激励 减排行为 | 绿证与碳交易联合机制,提升碳减排效率,缓解 财政补贴压力 |
| [ | 分布式CET | 声誉系统+智能合约 | 基于声誉的共识机制(DPoR), 提升交易效率 | 分布式碳交易系统,优化节点一致性与恶意行为防护, 为碳交易提供高效安全的解决方案 |
| [ | CET体系 | 区块链+声誉系统 | 声誉系统激励长期减排,智能合约 自动执行交易规则 | 改进ETS的模型,提高交易公平性和效率,为碳市场提供 长期有效的解决方案 |
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | 碳交易价格机制 | 区块链与博弈论结合 | 验证区块链对碳交易一级和二级市场碳价形成的 影响 | 基于博弈论的区块链碳价机制, 优化市场透明度和公平性 |
| [ | 再制造供应链 | 区块链+Stackelberg | 优化供应链定价与减排策略,分析区块链成本对 减排的影响 | 再制造供应链模型,提升减排投资激励和 环境保护效果 |
| [ | 碳减排技术合作 | 区块链+非合作-合作博弈 | 模型平衡供应链中的产量竞争和技术合作 | 非合作-合作博弈模型,优化制造商 减排策略与收益分配 |
| [ | 碳配额与 供应链管理 | 区块链+Nash博弈 | 分析供应商谎报碳配额和消费者绿色偏好的影响 | 提出供应链均衡模型,优化碳配额监管和 区块链成本效率 |
| [ | 能源与 碳配额交易 | 区块链+合作博弈 | 建立分布式市场模型,确保网络运营和 交易稳定性 | 能源-碳配额联合交易机制,优化效率并 降低交易成本 |
| [ | 碳与电力 联合交易 | 区块链+两阶段博弈 | 第一阶段优化碳交易价格,第二阶段平衡 电力供需 | 构建碳与电力联合定价框架,提升 减排效率与可再生能源利用 |
Tab. 3 Integrated application of blockchain and game theory in CET optimization
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | 碳交易价格机制 | 区块链与博弈论结合 | 验证区块链对碳交易一级和二级市场碳价形成的 影响 | 基于博弈论的区块链碳价机制, 优化市场透明度和公平性 |
| [ | 再制造供应链 | 区块链+Stackelberg | 优化供应链定价与减排策略,分析区块链成本对 减排的影响 | 再制造供应链模型,提升减排投资激励和 环境保护效果 |
| [ | 碳减排技术合作 | 区块链+非合作-合作博弈 | 模型平衡供应链中的产量竞争和技术合作 | 非合作-合作博弈模型,优化制造商 减排策略与收益分配 |
| [ | 碳配额与 供应链管理 | 区块链+Nash博弈 | 分析供应商谎报碳配额和消费者绿色偏好的影响 | 提出供应链均衡模型,优化碳配额监管和 区块链成本效率 |
| [ | 能源与 碳配额交易 | 区块链+合作博弈 | 建立分布式市场模型,确保网络运营和 交易稳定性 | 能源-碳配额联合交易机制,优化效率并 降低交易成本 |
| [ | 碳与电力 联合交易 | 区块链+两阶段博弈 | 第一阶段优化碳交易价格,第二阶段平衡 电力供需 | 构建碳与电力联合定价框架,提升 减排效率与可再生能源利用 |
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | 碳资产管理 | 智能合约 | 提高碳资产管理智能化水平,简化交易流程 | 支持溯源与身份认证,降低中小企业的参与成本 |
| [ | 碳交易与 资产管理 | 区块链+ ESG声誉 | 将碳排放权转化为链上资产,结合ESG评分提升 可信度 | 实现碳排放量自动抵消和资产化,提供数字化交易 解决方案 |
| [ | 绿证与碳联合 交易市场 | 智能合约 | 通过智能合约自动化配置资源,优化绿证与 碳排放权交易 | 联合交易市场模式,提升可再生能源激励效果 |
| [ | 可再生能源与 碳交易 | 智能合约 | 自动化信用生成与转移,提升交易效率和透明度 | 提高所有权认证与结算速度,减少双重计数问题 |
Tab. 4 Innovation and application of blockchain technology in carbon asset management
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | 碳资产管理 | 智能合约 | 提高碳资产管理智能化水平,简化交易流程 | 支持溯源与身份认证,降低中小企业的参与成本 |
| [ | 碳交易与 资产管理 | 区块链+ ESG声誉 | 将碳排放权转化为链上资产,结合ESG评分提升 可信度 | 实现碳排放量自动抵消和资产化,提供数字化交易 解决方案 |
| [ | 绿证与碳联合 交易市场 | 智能合约 | 通过智能合约自动化配置资源,优化绿证与 碳排放权交易 | 联合交易市场模式,提升可再生能源激励效果 |
| [ | 可再生能源与 碳交易 | 智能合约 | 自动化信用生成与转移,提升交易效率和透明度 | 提高所有权认证与结算速度,减少双重计数问题 |
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | IoT架构 | 云计算与边缘计算 | 提出混合架构提升效率与安全性 | 整合云、区块链和边缘计算的解决方案,增强 可靠性和可扩展性 |
| [ | 能源系统管理 | 区块链 | 去中心化与不可篡改性建立能源信任机制,提升 透明度与效率 | 分析区块链在能源市场中的潜力,提出建议并 解决技术升级难题 |
| [ | 碳交易平台 | 主权区块链 | 结合主权区块链减少能耗,保障数据安全与透明性 | 基于主权区块链的碳交易系统框架,优化 碳市场的效率和稳定性 |
| [ | 碳交易应用 | 智能合约 | 分布式结构降低成本,解决洗钱与数据标准缺失等问题 | 提出监管沙盒机制,增强区块链在碳交易中的 适用性与安全性 |
| [ | 点对点碳交易 | 区块链与博弈论 结合 | 优化点对点交易,确保公平性与隐私保护 | ETS框架,优化成本分配,促进低碳经济目标的 实现 |
Tab. 5 Challenges and future development of blockchain technology in CET
| 文献 | 应用场景 | 应用技术 | 核心特点 | 主要贡献 |
|---|---|---|---|---|
| [ | IoT架构 | 云计算与边缘计算 | 提出混合架构提升效率与安全性 | 整合云、区块链和边缘计算的解决方案,增强 可靠性和可扩展性 |
| [ | 能源系统管理 | 区块链 | 去中心化与不可篡改性建立能源信任机制,提升 透明度与效率 | 分析区块链在能源市场中的潜力,提出建议并 解决技术升级难题 |
| [ | 碳交易平台 | 主权区块链 | 结合主权区块链减少能耗,保障数据安全与透明性 | 基于主权区块链的碳交易系统框架,优化 碳市场的效率和稳定性 |
| [ | 碳交易应用 | 智能合约 | 分布式结构降低成本,解决洗钱与数据标准缺失等问题 | 提出监管沙盒机制,增强区块链在碳交易中的 适用性与安全性 |
| [ | 点对点碳交易 | 区块链与博弈论 结合 | 优化点对点交易,确保公平性与隐私保护 | ETS框架,优化成本分配,促进低碳经济目标的 实现 |
| [1] | 顾佰和,于东晖,王琛,等. 进一步深化碳达峰、碳中和战略转型路径的若干思考[J]. 中国科学院院刊, 2024, 39(4): 726-736. |
| GU B H, YU D H, WANG C, et al. Insights on further deepening carbon peaking and carbon neutrality strategy and pathways[J]. Bulletin of the Chinese Academy of Sciences, 2024, 39(4): 726-736. | |
| [2] | HUO T, DU Q, XU L, et al. Timetable and roadmap for achieving carbon peak and carbon neutrality of China’s building sector[J]. Energy, 2023, 274: No.127330. |
| [3] | 郑琼,江丽霞,徐玉杰,等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
| ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of the Chinese Academy of Sciences, 2022, 37(4): 529-540. | |
| [4] | ZHANG J, LI J, YE D, et al. The impact of digital economy of resource-based city on carbon emissions trading by blockchain technology[J]. Computational Intelligence and Neuroscience, 2022, 2022: No.6366061. |
| [5] | DONG S, ABBAS K, LI M, et al. Blockchain technology and application: an overview[J]. PeerJ Computer Science, 2023, 9: No.e1705. |
| [6] | LI L, WU J, CUI W. A review of blockchain cross‐chain technology[J]. IET Blockchain, 2023, 3(3): 149-158. |
| [7] | YLI-HUUMO J, KO D, CHOI S, et al. Where is current research on blockchain technology?: a systematic review [J]. PLoS ONE, 2016, 11(10): No.e0163477. |
| [8] | ZOU W, LO D, KOCHHAR P S, et al. Smart contract development: challenges and opportunities [J]. IEEE Transactions on Software Engineering, 2021, 47(10): 2084-2106. |
| [9] | PILLAI B, BISWAS K, MUTHUKKUMARASAMY V. Cross-chain interoperability among blockchain-based systems using transactions[J]. The Knowledge Engineering Review, 2020, 35: No.e23. |
| [10] | MOHANTY A. Impacts of climate change on human health and agriculture in recent years[C]// Proceedings of the 2021 IEEE Region 10 Symposium. Piscataway: IEEE, 2021: 1-4. |
| [11] | HEPBURN C. Carbon trading: a review of the Kyoto mechanisms[J]. Annual Review of Environment and Resources, 2007, 32: 375-393. |
| [12] | JAOUDE J A, SAADE R G. Blockchain applications: usage in different domains [J]. IEEE Access, 2019, 7: 45360-45381. |
| [13] | JIANG Q, RAHMAN Z U, ZHANG X, et al. An assessment of the effect of green innovation, income, and energy use on consumption-based CO2 emissions: empirical evidence from emerging nations BRICS[J]. Journal of Cleaner Production, 2022, 365: No.132636. |
| [14] | LI Z Z, LI R Y M, MALIK M Y, et al. Determinants of carbon emission in China: how good is green investment? [J]. Sustainable Production and Consumption, 2021, 27: 392-401. |
| [15] | ZHANG Y, LI S, LUO T, et al. The effect of emission trading policy on carbon emission reduction: evidence from an integrated study of pilot regions in China[J]. Journal of Cleaner Production, 2020, 265: No.121843. |
| [16] | 黄耀. 中国的温室气体排放、减排措施与对策[J]. 第四纪研究, 2006, 26(5): 722-732. |
| HUANG Y. Emissions of greenhouse gases in China and its reduction strategy[J]. Quaternary Sciences, 2006, 26(5): 722-732. | |
| [17] | 曾刚,万志宏. 碳排放权交易:理论及应用研究综述[J]. 金融评论, 2010, 2(4): 54-67, 124-125. |
| ZENG G, WAN Z H. Carbon emission permits trading: a summary[J]. Chinese Review of Financial Studies, 2010, 2(4): 54-67, 124-125. | |
| [18] | BÖHRINGER C. The Kyoto protocol: a review and perspectives[J]. Oxford Review of Economic Policy, 2003, 19(3): 451-466. |
| [19] | LIU L, CHEN C, ZZHAO Y, et al. China’s carbon-emissions trading: overview, challenges and future[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 254-266. |
| [20] | LIN B, JIA Z. Impacts of carbon price level in carbon emission trading market[J]. Applied Energy, 2019, 239: 157-170. |
| [21] | PARHAMFAR M, SADEGHKHANI I, ADELI A M. Towards the net zero carbon future: a review of blockchain‐enabled peer‐to‐peer carbon trading [J]. Energy Science and Engineering, 2024, 12(3): 1242-1264. |
| [22] | SARAJI S, BOROWCZAK M. A blockchain-based carbon credit ecosystem[EB/OL]. [2024-10-08].. |
| [23] | Al SADAWI A, MADANI B, SABOOR S, et al. A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract [J]. Technological Forecasting and Social Change, 2021, 173: No.121124. |
| [24] | MUZUMDAR A, MODI C, VYJAYANTHI C. A permissioned blockchain enabled trustworthy and incentivized emission trading system[J]. Journal of Cleaner Production, 2022, 349: No.131274. |
| [25] | RICHARDSON A, XU J. Carbon trading with blockchain[C]// Mathematical Research for Blockchain Economy: Proceedings of the 2nd International Conference MARBLE 2020, Vilamoura, Portugal, SPBE. Cham: Springer, 2020: 105-124. |
| [26] | LI W, FENG C, ZHANG L, et al. A scalable multi-layer PBFT consensus for blockchain [J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(5): 1146-1160. |
| [27] | LU Y, LI Y, TANG X, et al. STRICTs: a blockchain-enabled smart emission cap restrictive and carbon permit trading system[J]. Applied Energy, 2022, 313: No.118787. |
| [28] | ZHANG T T, FENG T T, CUI M L. Smart contract design and process optimization of carbon trading based on blockchain: the case of China’s electric power sector[J]. Journal of Cleaner Production, 2023, 397: No.136509. |
| [29] | WANG Y, XIE H, SUN X, et al. A cross-chain enabled day-ahead collaborative power-carbon-TGC market[J]. Energy, 2022, 258: No.124881. |
| [30] | SIPTHORPE A, BRINK S, VAN LEEUWEN T, et al. Blockchain solutions for carbon markets are nearing maturity[J]. One Earth, 2022, 5(7): 779-791. |
| [31] | ZHAO C, SUN J, GONG Y, et al. Research on the blue carbon trading market system under blockchain technology[J]. Energies, 2022, 15(9): No.3134. |
| [32] | HUANG H, LI Z, SAMPATH L P M I, et al. Blockchain-enabled carbon and energy trading for network-constrained coal mines with uncertainties[J]. IEEE Transactions on Sustainable Energy, 2023, 14(3): 1634-1647. |
| [33] | DANISH S M, ZHANG K, AMARA F, et al. Blockchain for energy credits and certificates: a comprehensive review [J]. IEEE Transactions on Sustainable Computing, 2024, 9(5): 727-735. |
| [34] | SADAWI A AL, ABU-LEBDEH G, NDIAYE M. Logistic and blockchain: a strong partnership[C]// Proceedings of the 2020 International Conference on Decision Aid Sciences and Application. Piscataway: IEEE, 2020: 288-292. |
| [35] | SADAWI A AL, MADANI B, SABOOR S, et al. A Hierarchical Blockchain of things network for Unified carbon Emission Trading (HBUETS): a conceptual framework[C]// Proceedings of the 2020 IEEE International Conference on Technology Management, Operations and Decisions. Piscataway: IEEE, 2020: 1-7. |
| [36] | THIRUNAVUKKARASU H, RAJENDRAN K, DINESH K, et al. Application of blockchain and IoT in cap and trade of carbon emissions [C]// Proceedings of the 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence. Piscataway: IEEE, 2023: 1-5. |
| [37] | PATEL D, BRITTO B, SHARMA S, et al. Carbon credits on blockchain [C]// Proceedings of the 2020 International Conference on Innovative Trends in Information Technology. Piscataway: IEEE, 2020: 1-5. |
| [38] | EFFAH D, BAI C, APPIAH F, et al. Carbon emission monitoring and credit trading: the blockchain and IoT approach[C]// Proceedings of the 18th International Computer Conference on Wavelet Active Media Technology and Information Processing. Piscataway: IEEE, 2021: 106-109. |
| [39] | CHAKRABORTY S, ANAND A, KALASH D, et al. Transparency in carbon credit by automating data-management using blockchain [C]// Proceedings of the 2022 IEEE International Conference on Blockchain and Distributed Systems Security. Piscataway: IEEE, 2022: 1-5. |
| [40] | TANG Y, WANG H, HUANG S, et al. Research on blockchain based electric carbon intelligent collaborative carbon verification platform[C]// Proceedings of the 5th International Conference on Circuits and Systems. Piscataway: IEEE, 2023: 253-257. |
| [41] | 李幸芝,韩蓓,李国杰,等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993. |
| LI X Z, HAN B, LI G J, et al. Challenges of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993. | |
| [42] | HUA W, SUN H. A blockchain-based peer-to-peer trading scheme coupling energy and carbon markets[C]// Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies. Piscataway: IEEE, 2019: 1-6. |
| [43] | 刘峥,霍一心,程印乾. 区块链与空间分析技术在全球碳交易市场中的应用[J]. 自然资源信息化, 2025(4): 85-91. |
| LIU Z, HUO Y X, CHENG Y Q. Application of blockchain and spatial analysis technologies in the global carbon trading market[J]. Natural Resources Informatization, 2025(4): 85-91. | |
| [44] | CHE L, LI E, XIN H, et al. A carbon emissions verification mechanism based on blockchain and reverse auction[C]// Proceedings of the 2nd International Conference on Artificial Intelligence and Blockchain Technology. Piscataway: IEEE, 2023: 71-75. |
| [45] | PENGNA P, LEELASANTITHAM A, SUKAMONGKOL Y. A low-code platform of carbon credit trading using blockchain technology: a case study in Nakhon Si Thammarat province[C]// Proceedings of the 5th Technology Innovation Management and Engineering Science International Conference. Piscataway: IEEE, 2024: 1-5. |
| [46] | YUAN L, DONG J, WANG N, et al. Blockchain-based carbon allowance trading market construction[C]// Proceedings of the 2021 IEEE Sustainable Power and Energy Conference. Piscataway: IEEE, 2021: 245-248. |
| [47] | 杨雪,金孝俊,王海洋,等. 基于区块链的绿证和碳交易市场联合激励机制[J]. 电力建设, 2022, 43(6): 24-33. |
| YANG X, JIN X J, WANG H Y, et al. Blockchain-based joint incentive mechanism for tradable green certificate and carbon trading market[J]. Electric Power Construction, 2022, 43(6): 24-33. | |
| [48] | HU Z, DU Y, RAO C, et al. Delegated proof of reputation consensus mechanism for blockchain-enabled distributed carbon emission trading system[J]. IEEE Access, 2020, 8: 214932-214944. |
| [49] | KHAQQI K N, SIKORSKI J J, HADINOTO ONG K, et al. Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application [J]. Applied Energy, 2018, 209: 8-19. |
| [50] | 刘涛. 区块链技术对碳交易价格机制的影响研究[J]. 价格理论与实践, 2020(8): 54-57. |
| LIU T. Research on the impact of blockchain technology on carbon trading price mechanism[J]. Price: Theory and Practice, 2020(8): 54-57. | |
| [51] | 龚本刚,唐文慧,刘志,等. 碳交易政策下区块链技术对再制造供应链定价与减排决策的影响[J]. 系统管理学报, 2025, 34(2): 363-376. |
| GONG B G, TANG W H, LIU Z, et al. Impact of blockchain technology on pricing and emission reduction decisions in remanufacturing supply chains under carbon trading[J]. Journal of Systems and Management, 2025, 34(2): 363-376. | |
| [52] | 南江霞,吴小勇,张茂军. 区块链赋能的低碳市场制造商产量竞争与碳减排技术合作[J]. 中国管理科学, 2025, 33(6): 360-368. |
| NAN J X, WU X Y, ZHANG M J. Production competition and emission reduction technology cooperation between manufacturers under the low-carbon market based on blockchain technology[J]. Chinese Journal of Management Science, 2025, 33(6): 360-368. | |
| [53] | 史聪,张桂涛,张萧,等. 碳配额与交易监管下基于区块链技术的平台供应链网络运营决策[J]. 山东大学学报(理学版), 2024, 59(1): 100-114, 123. |
| SHI C, ZHANG G T, ZHANG X, et al. Platform supply chain network operation decision based on blockchain technology under cap-and-trade regulation[J]. Journal of Shandong University (Natural Science), 2024, 59(1): 100-114, 123. | |
| [54] | YAN M Y, MOHAMMAD S, AHMED A, et al. Blockchain for transacting energy and carbon allowance in networked microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4702-4714. |
| [55] | XU W, LIN F, JIA R, et al. Joint pricing for carbon and electricity trading in blockchain-based smart grids: a two-stage game approach [C]// Proceedings of the 2023 IEEE International Conference on Blockchain. Piscataway: IEEE, 2023: 80-85. |
| [56] | LI G, LI J, LI L. Application and research of carbon asset management based on blockchain[C]// Proceedings of the 5th International Conference on Electronic Information Technology and Computer Engineering. New York: ACM, 2021: 672-679. |
| [57] | GOLDING O, YU G, LU Q, et al. Carboncoin: blockchain tokenization of carbon emissions with ESG-based reputation[C]// Proceedings of the 2022 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2022: 1-5. |
| [58] | 冯昌森,谢方锐,文福拴,等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11. |
| FENG C S, XIE F R, WEN F S, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11. | |
| [59] | ASHLEY M J, JOHNSON M S. Establishing a secure, transparent, and autonomous blockchain of custody for renewable energy credits and carbon credits[J]. IEEE Engineering Management Review, 2018, 46(4): 100-102. |
| [60] | MEMON R A, LI J P, AHMED J, et al. Cloud-based vs. blockchain-based IoT: a comparative survey and way forward [J]. Frontiers of Information Technology and Electronic Engineering, 2020, 21(4): 563-586. |
| [61] | CHEN S, PING J, YAN Z, et al. Blockchain in energy systems: values, opportunities, and limitations [J]. Frontiers in Energy, 2022, 16(1): 9-18. |
| [62] | BAI Y, SONG T, YANG Y, et al. Construction of carbon trading platform using sovereignty blockchain[C]// Proceedings of the 2020 International Conference on Computer Engineering and Intelligent Control. Piscataway: IEEE, 2020: 149-152. |
| [63] | 周业军,邓若翰. 区块链应用于碳交易:应用优势、潜在挑战与制度应对[J]. 西南金融, 2023(3): 3-15. |
| ZHOU Y J, DENG R H. Blockchain applied to carbon trading: application advantages, potential challenges and institutional responses[J]. Southwest Finance, 2023(3): 3-15. | |
| [64] | KAZI M K, FARUQUE HASAN M M. Optimal and secure peer-to-peer carbon emission trading: a game theory informed framework on blockchain[J]. Computers and Chemical Engineering, 2024, 180: No.108478. |
| [65] | BOUMAIZA A. A blockchain-centric P2P trading framework incorporating carbon and energy trades[J]. Energy Strategy Reviews, 2024, 54: No.101466. |
| [1] | Sheping ZHAI, Pengju ZHU, Rui YANG, Jiayiteng LIU. Blockchain-based identity management system for internet of things [J]. Journal of Computer Applications, 2025, 45(9): 2873-2881. |
| [2] | Wei GAO, Lihua LIU, Bintao HE, Fang’an DENG. Research advances in blockchain consensus mechanisms and improvement algorithms [J]. Journal of Computer Applications, 2025, 45(9): 2848-2864. |
| [3] | Wei SHE, Tianxiang MA, Haige FENG, Zhao TIAN, Wei LIU. Blockchain covert communication method based on contract call concealment [J]. Journal of Computer Applications, 2025, 45(9): 2865-2872. |
| [4] | Jintao SU, Lina GE, Liguang XIAO, Jing ZOU, Zhe WANG. Detection and defense scheme for backdoor attacks in federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2399-2408. |
| [5] | Haiyang PENG, Weixing JI, Fawang LIU. Blockchain-based data notarization model for autonomous driving simulation testing [J]. Journal of Computer Applications, 2025, 45(8): 2421-2427. |
| [6] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [7] | Di WANG. P-Dledger: blockchain edge node security architecture [J]. Journal of Computer Applications, 2025, 45(8): 2630-2636. |
| [8] | Lixiao ZHANG, Yao MA, Yuli YANG, Dan YU, Yongle CHEN. Large-scale IoT binary component identification based on named entity recognition [J]. Journal of Computer Applications, 2025, 45(7): 2288-2295. |
| [9] | Yuxuan CHEN, Haibin ZHENG, Zhenyu GUAN, Boheng SU, Yujue WANG, Zhenwei GUO. Blockchain sharding mechanism in asynchronous network based on HoneyBadgerBFT and DAG [J]. Journal of Computer Applications, 2025, 45(7): 2092-2100. |
| [10] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
| [11] | Li’e WANG, Caiyi LIN, Yongdong LI, Xingcheng FU, Xianxian LI. Digital content copyright protection and fair tracking scheme based on blockchain [J]. Journal of Computer Applications, 2025, 45(6): 1756-1765. |
| [12] | Xin SHAO, Zigang CHEN, Xingchun YANG, Haihua ZHU, Wenjun LUO, Long CHEN, Yousheng ZHOU. Vehicular digital evidence preservation and access control based on consortium blockchain [J]. Journal of Computer Applications, 2025, 45(6): 1902-1910. |
| [13] | Gaimei GAO, Miaolian DU, Chunxia LIU, Yuli YANG, Weichao DANG, Guoxia DI. Privacy protection method for consortium blockchain based on SM2 linkable ring signature [J]. Journal of Computer Applications, 2025, 45(5): 1564-1572. |
| [14] | Yilin CHEN, Xiaoyu LI. Blockchain coin mixing scheme based on one-time ring signature [J]. Journal of Computer Applications, 2025, 45(12): 3881-3887. |
| [15] | Yushu LI, Ying XING, Siqi LU, Heng PAN, Senchun CHAI, Xueming SI. Deep learning-based vulnerability detection tool for C/C++ smart contracts at function-body slice level [J]. Journal of Computer Applications, 2025, 45(11): 3493-3501. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||