Joint entity-relation extraction methods based on “pre-training + fine-tuning” paradigm rely on large-scale annotated data. In the small sample scenarios of ancient Chinese books where data annotation is difficult and costly, the fine-tuning efficiency is low and the extraction performance is poor; entity nesting and relation overlapping problems are common in ancient Chinese books, which limit the effect of joint entity-relation extraction; pipeline extraction methods have error propagation problems, which affect the extraction effect. In response to the above problems, a joint entity-relation extraction method for ancient Chinese books based on prompt learning and global pointer network was proposed. Firstly, the prompt learning method of span extraction reading comprehension was used to inject domain knowledge into the Pre-trained Language Model (PLM) to unify the optimization goals of pre-training and fine-tuning, and the input sentences were encoded. Then, the global pointer networks were used to predict and jointly decode the boundaries of subject and object and the boundaries of subject and object of different relationships, so as to align into entity-relation triples, and complete the construction of PTBG (Prompt Tuned BERT with Global pointer) model. As the results, the problem of entity nesting and relation overlapping was solved, and the error propagation problem of pipeline decoding was avoided. Finally, based on the above work, the influence of different prompt templates on extraction performance was analyzed. Experimental results on Records of the Grand Historian dataset show that compared with OneRel model before and after injecting domain knowledge, the PTBG model has the F1-value increased by 1.64 and 1.97 percentage points respectively. It can be seen that the PTBG model can better extract entity-relation jointly in ancient Chinese books, and provides new research ideas and approaches for low-resource, small-sample deep learning scenarios.
Existing Graph Convolutional Network (GCN) methods are based on the assumption of homophily, which cannot be directly applied to heterophilic graph representation learning, and many studies on heterophilic graph representation learning are limited by message-passing mechanism, which leads to the problem of over-smoothing due to the confusion and over-squeezing of node features. To address these issues, a semi-supervised heterophilic graph representation learning model based on Graph Transformer,named HPGT(HeteroPhilic Graph Transformer), was proposed. Firstly, the path neighborhood of a node was sampled using the degree connection probability matrix, then the heterophilic connection patterns of nodes on the path were adaptively aggregated through the self-attention mechanism, which were encoded to obtain the structural information of nodes, and the original attribute information and structural information of nodes were used to construct the self-attention module of the Transformer layer. Secondly, the hidden layer representation of each node itself was separated from those of its neighboring nodes and updated to avoid the node aggregating too much information about itself through the self-attention module, and then the representation and the neighborhood representation of nodes were connected to get the output of a single Transformer layer; in addition, the outputs of all Transformer layers were connected to get the final node hidden layer representation so as to prevent the loss of information in middle layers. Finally, the linear layer and Softmax layer were used to map the hidden layer representations of nodes to the predictive labels of nodes. In the comparison experiments with the model without Structural Encoding (SE), SE based on degree connection probability provides effective deviation information for self-attention modules of Transformer layers, and improves the average accuracy of HPGT by 0.99% to 11.98%. Compared with the comparative models, on the heterophilic datasets (Texas, Cornell, Wisconsin, and Actor), the node classification accuracies of HPGT are improved by 0.21% to 1.69%, and on homophilic datasets (Cora, CiteSeer, and PubMed), the node classification accuracies reach 0.837 9, 0.746 7 and 0.886 2, respectively. The experimental results show that HPGT has a strong ability for heterogeneous graph representation learning, and is particularly suitable for node classification tasks of strong heterophilic graphs.
In view of the phenomenon that automatic sentence segmentation and punctuation task in ancient book information processing relies on large-scale annotated corpora, and considering that training high-quality, large-scale samples is expensive and these samples are difficult to obtain, a prompt learning method for ancient text sentence segmentation and punctuation based on span-extracted prototypical network was proposed. Firstly, structured prompt information was incorporated into the support set to form an effective prompt template, so as to improve the model's learning efficiency. Then, combined with a punctuation position extractor and a prototype network classifier, the misjudgment impact and the interference from non-punctuation labels in traditional sequence labeling method were effectively reduced. Experimental results show that on Records of the Grand Historian dataset, the F1 score of the proposed method is 2.47 percentage points higher than that of the Siku-BERT-BiGRU-CRF (Siku - Bidirectional Encoder Representation from Transformer - Bidirectional Gated Recurrent Unit - Conditional Random Field) method. In addition, on the public multi-domain ancient text dataset CCLUE, the precision and F1 score of this method reach 91.60% and 93.12% respectively, indicating that the method can perform sentence segmentation and punctuation in multi-domain ancient text effectively and automatically by using a small number of training samples. Therefore, the proposed method offers new thought and approach for conducting in-depth research on automatic sentence segmentation and punctuation, as well as for enhancing the model's learning efficiency, in multi-domain ancient text.
On the basis of the classical multiple knapsack problem, the Heterogeneous Multiple Knapsack Problem (HMKP) was proposed, which was abstracted from the commonalities of typical logistics service scenarios. And, an Imperialist Competitive Algorithm (ICA) was designed and customized to solve HMKP. As the origin ICA is easy to fall into the local optimum and the optimal solution of the 0-1 knapsack problem is usually near the constraint boundary, Two-Point Automutation Strategy (TPAS) and Jump out of Local Optimum Algorithm (JLOA) were designed to improve ICA, and a Binary Imperialist Competitive Algorithm (BICA) for 0-1 knapsack problem was presented. BICA showed comprehensive and efficient optimization ability in solving 35 numerical examples of 0-1 knapsack problem. BICA based on Best-Matched Value (BMV) was able to find the ideal optimal solutions of 19 out of 20 examples with 100% success rate in the first test set, and the ideal optimal solutions of 12 out of 15 examples were found by the above algorithm with 100% success rate in the second test set, achieving the best performance of all the comparison algorithms. The numerical analysis results show that BICA maintains the multipolar development strategy in the optimization evolution and relies on the unique population evolution method to search the ideal solution in the solution space efficiently. Subsequently, aiming at the strong constraint and high complexity of HMKP, a Multiple Level Binary Imperialist Competitive Algorithm (MLB-ICA) for solving HMKP was put forward based on BICA. Finally, the numerical experiments and performance evaluation of MLB-ICA were carried out on a high dimensional HMKP test set constructed by combining multiple typical numerical examples of 0-1 knapsack problems. The results showed that the solving time of MLB-ICA is longer than that of Gurobi solver, but the solving accuracy of MLB-ICA is 28% higher than that of Gurobi solver. It can be seen that MLB-ICA can solve high-dimensional complicated HMKP efficiently with low computational cost within acceptable time, and provides a feasible algorithm design scheme for ICA to solve super-large scale combinatorial optimization problems.
Existing tree decoder is only suitable for solving single variable problems, but has no good effect of solving multivariate problems. At the same time, most mathematical solvers select truth expression wrongly, which leads to learning deviation occurred in training. Aiming at the above problems, a Graph to Equation Tree (GET) model based on expression level-by-level aggregation and dynamic selection was proposed. Firstly, text semantics was learned through the graph encoder. Then, subexpressions were obtained by aggregating quantities and unknown variables iteratively from bottom of the equation tree layer by layer. Finally, combined with the longest prefix of output expression, truth expression was selected dynamically to minimize the deviation. Experimental results show that the precision of proposed model reaches 83.10% on Math23K dataset, which is 5.70 percentage points higher than that of Graph to Tree (Graph2Tree) model. Therefore, the proposed model can be applied to solution of complex multivariate mathematical problems, and can reduce influence of learning deviation on experimental results.
With the development and maturity of deep learning, the quality of neural machine translation has increased, yet it is still not perfect and requires human post-editing to achieve acceptable translation results. Interactive Machine Translation (IMT) is an alternative to this serial work, that is performing human interaction during the translation process, where the user verifies the candidate translations produced by the translation system and, if necessary, provides new input, and the system generates new candidate translations based on the current feedback of users, this process repeats until a satisfactory output is produced. Firstly, the basic concept and the current research progresses of IMT were introduced. Then, some common methods and state-of-the-art works were suggested in classification, while the background and innovation of each work were briefly described. Finally, the development trends and research difficulties of IMT were discussed.
Aiming at the problem that the deraining methods based on tensor product wavelet cannot capture high-frequency rain streaks in all directions, a Dual U-Former Network (DUFN) based on non-separable lifting wavelet was proposed. Firstly, the isotropic non-separable lifting wavelet was used to capture high-frequency rain streaks in all directions. In this way, compared with tensor product wavelets such as Haar wavelet, which can only capture high-frequency rain streaks in three directions, DUFN was able to obtain more comprehensive rain streak information. Secondly, two U-Nets composed of Transformer Blocks (TBs) were connected in series at various scales, so that the semantic features of the shallow decoder were transferred to the deep stage, and the rain streaks were removed more thoroughly. At the same time, the scale-guide encoder was used to guide the coding stage by using the information of various scales in the shallow layer, and Gated Fusion Module (GFM) based on CBAM (Convolutional Block Attention Module) was used to make the fusion process put more focus on the rain area. Experimental results on Rain200H, Rain200L, Rain1200 and Rain12 synthetic datasets show that the Structure SIMilarity (SSIM) of DUFN is improved by 0.009 7 on average compared to that of the advanced method SPDNet (Structure-Preserving Deraining Network). And on Rain200H, Rain200L and Rain12 synthetic datasets, the Peak Signal-to-Noise Ratio (PSNR) of DUFN is improved by 0.657 dB averagely. On real-world dataset SPA-Data, PSNR and SSIM of DUFN are improved by 0.976 dB and 0.003 1 respectively compared with those of the advanced method ECNetLL (Embedding Consistency Network+Layered Long short-term memory). The above verifies that DUFN can improve the rain removal performance by enhancing the ability to capture high-frequency information.
Due to the introduction of MonoDepth2, unsupervised monocular ranging has made great progress in the field of visible light. However, visible light is not applicable in some scenes, such as at night and in some low-visibility environments. Infrared thermal imaging can obtain clear target images at night and under low-visibility conditions, so it is necessary to estimate the depth of infrared image. However, due to the different characteristics of visible and infrared images, it is unreasonable to migrate existing monocular depth estimation algorithms directly to infrared images. An infrared monocular ranging algorithm based on multiscale feature fusion after improving the MonoDepth2 algorithm can solve this problem. A new loss function, edge loss function, was designed for the low texture characteristic of infrared image to reduce pixel mismatch during image reprojection. The previous unsupervised monocular ranging simply upsamples the four-scale depth maps to the original image resolution to calculate projection errors, ignoring the correlation between scales and the contribution differences between different scales. A weighted Bi-directional Feature Pyramid Network (BiFPN) was applied to feature fusion of multiscale depth maps so that the blurring of depth map edge was solved. In addition, Residual Network (ResNet) structure was replaced by Cross Stage Partial Network (CSPNet) to reduce network complexity and increase operation speed. The experimental results show that edge loss is more suitable for infrared image ranging, resulting in better depth map quality. After adding BiFPN structure, the edge of depth image is clearer. After replacing ResNet with CSPNet, the inference speed is improved by about 20 percentage points. The proposed algorithm can accurately estimate the depth of the infrared image, solving the problem of depth estimation in night low-light scenes and some low-visibility scenes, and the application of this algorithm can also reduce the cost of assisted driving to a certain extent.
In feature learning process, the existing hashing methods cannot distinguish the importance of the feature information of each region, and cannot utilize the label information to explore the correlation between modalities. Therefore, an Adaptive Hybrid Attention Hashing for deep cross-modal retrieval (AHAH) model was proposed. Firstly, channel attention and spatial attention were combined by the weights obtained by autonomous learning to strengthen the attention to the relevant target area and weaken the attention to the irrelevant target area. Secondly, the similarity between modalities was expressed more finely through the statistical analysis of modality labels and quantification of similarity degrees to numbers between 0 and 1 by using the proposed similarity measurement method. Compared with the most advanced method Multi-Label Semantics Preserving Hashing (MLSPH) on four commonly used datasets MIRFLICKR-25K, NUS-WIDE, MSCOCO, and IAPR TC-12, when the hash code length is 16 bit, the proposed method has the retrieval mean Average Precision (mAP) increased by 2.25%, 1.75%, 6.8%, and 2.15%, respectively. In addition, ablation experiments and efficiency analysis also prove the effectiveness of the proposed method.
Concerning the issue that the traditional price prediction model for agricultural product cannot predict the market price of apple quickly and accurately under the big data scenario, an apple price prediction method based on distributed neural network was proposed. Firstly, the relative factors that affect the market price of apple were studied, and the historical price of apple, historical price of alternatives, household consumption level and oil price were selected as the input of the neural network. Secondly, a distributed neural network prediction model containing price fluctuation law was constructed to implement the short-term prediction for the market price of apple. Experimental results show that the proposed model has a high prediction accuracy, and the average relative error is only 0.50%, which satisfies the requirements of apple market price prediction. It indicates that the distributed neural network model can reveal the price fluctuation law and development trend of apple market price through the characteristic of self-learning. The proposed method not only can provide scientific basis for stabilizing apple market order and macroeconomic regulation of market price, but also can reduce the harms brought by price fluctuations, helping farmers to avoid the market risks.