Concerning the poor privacy and flexibility of traditional lifetime estimation for human motion, a lifetime estimation system for human motion was proposed, by analyzing the amplitude variation of WiFi Channel State Information (CSI). In this system, the continuous and complex lifetime estimation problem was transformed into a discrete and simple human motion detection problem. Firstly, the CSI was collected with filtering out the outliers and noise. Secondly, Principal Component Analysis (PCA) was used to reduce the dimension of subcarriers, obtaining the principal components and the corresponding eigenvectors. Thirdly, the variance of principal components and the mean of first difference of eigenvectors were calculated, and a Back Propagation Neural Network (BPNN) model was trained with the ratio of above two parameters as eigenvalue. Fourthly, human motion detection was achieved by the trained BP neural network model, and the CSI data were divided into some segments with equal width when the human motion was detected. Finally, after the human motion detection being performed on all CSI segments, the human motion lifetime was estimated according to the number of CSI segments with human motion detected. In real indoor environment, the average accuracy of human motion detection can reach 97% and the error rate of human motion lifetime is less than 10%. The experimental results show that the proposed system can effectively estimate the lifetime of human motion.
In order to improve the efficiency of power transmission line inspection by Unmanned Aerial Vehicle (UAV), a new method was proposed for detecting broken transmission lines and defects of foreign body based on the perception of line structure. The transmission line image acquired by UAV was easily influenced by the background texture and light, the gradient operators of horizontal and vertical direction which can be used to detect the line width were used to extract line objects in the inspection image. The study on calculation of gestalt perception of similarity, continuity and colinearity connected the intermittent wires into continuous wires. Then the parallel wire groups were further determined through the calculation of parallel relationship between wires. In order to reduce the detection error rate, spacers and stockbridge dampers of wires were recognized based on a local contour feature. Finally, the width change and gray similarity of segmented conductor wire were calculated to detect the broken part of wire and foreign object defect. The experimental results show that the proposed method can detect broken wire strand and foreign object defect efficiently under complicated backgrounds from the transmission line of UAV images.
To improve the workshop environment of textile mill and enhance the automatic control level on the environment, an intelligent environment measuring and controlling system of textile workshop based on Internet of Things (IoT) was proposed. The overall design scheme of the system was given. In order to reduce traffic loads of sink nodes and improve the data transmission rate of network, the wireless network topology structure of single-hop multi-sink nodes was designed. The concrete implementation scheme of hardware design and software work process of sensing nodes, controlling nodes and other nodes were represented detailedly. The improved Newton interpolation algorithm was used as the fitting function to process the detection data, which improved the precision of detection and control of system. The application results show that the system is simple, stable and reliable, low in cost, easy to maintain and upgrade, and obtains good application effect.
The prior work of video analysis technology is video foreground detection in complex scenes. In order to solve the problem of low accuracy in foreground moving target detection, an improved moving object extraction algorithm for video based on Visual Background Extractor (ViBE), called ViBE+, was proposed. Firstly, in the model initialization stage, each background pixel was modeled by a collection of its diamond neighborhood to simply the sample information. Secondly, in the moving object extraction stage, the segmentation threshold was adaptively obtained to extract moving object in dynamic scenes. Finally, for the sudden illumination change, a method of background rebuilding and update-parameter adjusting was proposed during the process of background update. The experimental results show that, compared with the Gaussian Mixture Model (GMM) algorithm, Codebook algorithm and original ViBE algorithm, the improved algorithm's similarity metric on moving object extracting results increases by 1.3 times, 1.9 times and 3.8 times respectively in complex video scene LightSwitch. The proposed algorithm has a better adaptability to complex scenes and performance compared to other algorithms.
In order to solve the problem of misjudgment which due to emotion point to an unknown and missing hidden view in traditional emotion classification method, a text sentiment classification method based on emotional role modeling was proposed. The method firstly identified evaluation objects in the text, and it used the measure based on local semantic analysis to tag the sentence emotion which had potential evaluation object. Then it distinguished the positive and negative polarity of evaluation objects in this paper by defining its emotional role. And it let the tendency value of emotional role integrate into feature space to improve the feature weight computation method. Finally, it proposed the concept named "features converge" to reduce the dimension of model. The experimental results show that the proposed method can improve the effect and accuracy of 3.2% for text sentiment classification effectively compared with other approaches which tend to pick the strong subjective emotional items as features.
In view of the problem that how to reduce the storage space of the trajectory data and improve the speed of data analysis and transmission in the Global Positioning System (GPS), a hybrid trajectory compression algorithm based on the multiple spatiotemporal characteristics was proposed in this paper. On the one hand, in the algorithm, a new online trajectory compression strategy based on the multiple spatiotemporal characteristics was adopted in order to choose the characteristic points more accurately by using the position, direction and speed information of GPS point. On the other hand, the hybrid trajectory compression strategy which combined online compression with batched compression was used, and the Douglas batched compression algorithm was adopted to do the second compression process of the hybrid trajectory compression. The experimental results show that the compression error of the new online trajectory compression strategy based on multiple spatiotemporal characteristics reduces significantly, although the compression ratio fells slightly compared with the existing spatiotemporal compression algorithm. By choosing appropriate cycle time of batching, the compression ratio and compression error of this algorithm are improved compared with the existing spatiotemporal compression algorithm.
Images of transmission tower acquired by Unmanned Aerial Vehicle (UAV) have high resolution and complex background, the traditional stitching algorithm using feature points can detect a large number of feature points from background which costs much time and affects the matching accuracy. For solving this problem, a new image mosaic algorithm with quick speed and strong robustness was proposed. To reduce the influence of the background, each image was first segmented into foreground and background based on a new implementation method of salient region detection. To improve the feature point extraction and reduce the computation complexity, transformation matrix was calculated and image registration was completed by ORB (Oriented Features from Accelerated Segment Test (FAST) and Rotated Binary Robust Independent Elementary Features (BRIEF)) feature. Finally, the image mosaic was realized with image fusion method based on multi-scale analysis. The experimental results indicate that the proposed algorithm can complete image mosaic precisely and quickly with satisfactory mosaic effect.
To solve the problem of Fine Particulate Matter (PM2.5) concentration prediction, a PM2.5 concentration prediction model was proposed. First, through introducing the comprehensive meteorological index, the factors of wind, humidity, temperature were comprehensively considered; then the feature vector was conducted by combining the actual concentration of SO2, NO2, CO and PM10; finally the Least Squares Support Vector Machine (LS-SVM) prediction model was built based on feature vector and PM2.5 concentration data. The experimental results using the data from the city A and city B environmental monitoring centers in 2013 show that, the forecast accuracy is improved after the introduction of a comprehensive weather index, error is reduced by nearly 30%. The proposed model can more accurately predict the PM2.5 concentration and it has a high generalization ability. Furthermore, the author analyzed the relationship between PM2.5 concentration and the rate of hospitalization, hospital outpatient service amount, and found a high correlation between them.