[1] 谢承旺,许雷,赵怀瑞,等. 应用精英反向学习的多目标烟花爆炸算法[J]. 电子学报, 2016, 44(5):1180-1188.(XIE C W, XU L, ZHAO H R, et al. Multi-objective fireworks optimization algorithm using elite opposition-based learning[J]. Acta Electronica Sinica, 2016, 44(5):1180-1188.) [2] MIRJALILI S, JANGIR P, MIRJALILI S Z, et al. Optimization of problems with multiple objectives using the multi-verse optimization algorithm[J]. Knowledge-Based Systems, 2017, 134:50-71. [3] SEIFOLLAHI-AGHMIUNI S, BOZORG-HADDAD O. Multi objective optimization with a new evolutionary algorithm[J]. Water Resources Management, 2018, 32:4013-4030. [4] DEB K. Multi-objective optimisation using evolutionary algorithms:an introduction[M]//TUTUM C, HATTEL J H. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. London:Springer, 2011:3-34. [5] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm theory and application[J]. Advances in Engineering Software, 2017, 105:30-47. [6] MAFARJA M, ALJARAH L, HEIDARI A A, et al. Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems[J]. Knowledge-Based Systems, 2018, 145:25-45. [7] LUO J, CHEN H, ZHANG Q, et al. An improved grasshopper optimization algorithm with application to financial stress prediction[J]. Applied Mathematical Modelling, 2018, 64:654-668. [8] TAHER M A, KAMEL S, JURADO F, et al. Modified grasshopper optimization framework for optimal power flow solution[J]. Electrical Engineering, 2019, 101:121-148. [9] MIRJALILI S Z, MIRJALILI S, SAREMI S, et al. Grasshopper optimization algorithm for multi-objective optimization problems[J]. Applied Intelligence, 2018, 48:805-820. [10] 黄超,梁圣涛, 张毅, 等. 基于多目标蝗虫优化算法的移动机器人路径规划[J]. 计算机应用,2019,39(10):2859-2864.(HUANG C, LIANG S T, ZHANG Y, et al. Path planning of mobile robot based on multi-objective grasshopper optimization algorithm[J]. Journal of Computer Applications, 2019, 39(10):2859-2864.) [11] NEVE A G, KAKANDIKAR G M, KULKARNI O. Application of grasshopper optimization algorithm for constrained and unconstrained test functions[J]. International Journal of Swarm Intelligence and Evolutionary Computation, 2017, 6(3):1-7. [12] EWEES A A, ELAZIZC M A, HOUSSEIN E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications, 2018, 112:156-172. [13] 张翔宇,董增川,马红亮. 基于改进多目标遗传算法的小浪底水库优化调度研究[J]. 水电能源科学, 2017, 35(1):65-68. (ZHANG X Y, DONG Z C, MA H L. Study on optimization operation of xiaolangdi reservoir based on improved multi-objective genetic algorithm[J]. Water Resources and Power, 2017, 35(1):65-68.) [14] WEERASINGHE G, CHI H M, CAO Y Z. Particle swarm optimization simulation via optimal halton sequences[J]. Procedia Computer Science, 2016, 80:772-781. [15] 戚玉涛, 刘芳, 常伟远,等. 求解多目标问题的Memetic免疫优化算法[J]. 软件学报, 2013, 24(7):1529-1544.(QI Y T, LIU F, CHANG W Y, et al. Memetic immune algorithm for multiobjective optimization[J]. Journal of Software, 2013, 24(7):1529-1544.) [16] QIU X, XU J X, TAN K C, et al. Adaptive cross-generation differential evolution operators for multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(2):232-244. [17] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [18] ARORA S, ANAND P. Chaotic grasshopper optimization algorithm for global optimization[J]. Neural Computing and Applications, 2019, 31:4385-4405. [19] 耿焕同,陈哲,陈正鹏,等. 一种基于群体分布特征的自适应多目标粒子群优化算法[J]. 控制与决策, 2017, 32(8):1386-1394. (GENG H T, CHEN Z, CHEN Z P, et al. A self-adaptive multiobjective particle swarm optimization algorithm based on swarm distribution characteristic[J]. Control and Decision, 2017, 32(8):1386-1394.) [20] JIANG S W, ONG Y S, ZHANG J, et al. Consistencies and contradictions of performance metrics in multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2014, 44(12):2391-2404. |