Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Ultrasound thyroid segmentation network based on feature fusion and dynamic multi-scale dilated convolution
HU Yishan, QIN Pinle, ZENG Jianchao, CHAI Rui, WANG Lifang
Journal of Computer Applications    2021, 41 (3): 891-897.   DOI: 10.11772/j.issn.1001-9081.2020060783
Abstract499)      PDF (1326KB)(1584)       Save
Concerning the the size and morphological diversity of thyroid tissue and the complexity of surrounding tissue in thyroid ultrasound images, an ultrasound thyroid segmentation network based on feature fusion and dynamic multi-scale dilated convolution was proposed. Firstly, the dilated convolutions with different dilation rates and dynamic filters were used to fuse the global semantic information of different receptive domains and the semantic information in the context details with different ranges, so as to improve the adaptability and accuracy of the network to multi-scale targets. Then, the hybrid upsampling method was used to enhance the spatial information of high-dimensional semantic features and the context information of low-dimensional spatial features during feature dimensionality reduction. Finally, the spatial attention mechanism was introduced to optimize the low-dimensional features of the image, and the method of fusing high- and low-dimensional features was applied to retain the useful features of high- and low-dimensional feature information with the elimination of the redundant information and improve the network's ability to distinguish the background and foreground of the image. Experimental results show that the proposed method has an accuracy rate of 0.963±0.026, a recall rate of 0.84±0.03 and a dice coefficient of 0.79±0.03 in the public dataset of thyroid ultrasound images. It can be seen that the proposed method can solve the problems of large difference of tissue morphology and complex surrounding tissues.
Reference | Related Articles | Metrics
Face frontalization generative adversarial network algorithm based on face feature map symmetry
LI Hongxia, QIN Pinle, YAN Hanmei, ZENG Jianchao, BAO Qianyue, CHAI Rui
Journal of Computer Applications    2021, 41 (3): 714-720.   DOI: 10.11772/j.issn.1001-9081.2020060779
Abstract713)      PDF (1432KB)(824)       Save
At present, the research of face frontalization mainly solves the face yaw problem, and pays less attention to the face frontalization of the side face affected by yaw and pitch at the same time in real scenes such as surveillance video. Aiming at this problem and the problem of incomplete identity information retained in front face image generated by multi-angle side faces, a Generative Adversarial Network (GAN) based on feature map symmetry and periocular feature preserving loss was proposed. Firstly, according to the prior of face symmetry, a symmetry module of the feature map was proposed. The face key point detector was used to detect the position of nasal tip point, and mirror symmetry was performed to the feature map extracted by the encoder according to the nasal tip, so as to alleviate the lack of facial information at the feature level. Finally, benefiting from the idea of periocular recognition, the periocular feature preserving loss was added in the existing identity preserving method of generated image to train the generator to generate realistic and identity-preserving front face image. Experimental results show that the facial details of the images generated by the proposed algorithm were well preserved, and the average Rank-1 recognition rate of faces with all angles under the pitch of CAS-PEAL-R1 dataset is 99.03%, which can effectively solve the frontalization problem of multi-angle side faces.
Reference | Related Articles | Metrics
Automatic segmentation algorithm of two-stage mediastinal lymph nodes using attention mechanism
XU Shaowei, QIN Pinle, ZENG Jianchao, ZHAO Zhikai, GAO Yuan
Journal of Computer Applications    2021, 41 (2): 556-562.   DOI: 10.11772/j.issn.1001-9081.2020060809
Abstract453)      PDF (2390KB)(545)       Save
Judging weather there exists mediastinal lymph node metastasis in the location of mediastinal lymph node region and correctly segmenting malignant lymph nodes have great significance to the diagnosis and treatment of lung cancer. In view of the large difference in mediastinal lymph node size, the imbalance of positive and negative samples and the feature similarity between surrounding soft tissues and lung tumors, a new cascaded two-stage mediastinal lymph node segmentation algorithm based on attention was proposed. First, a two-stage segmentation algorithm was designed based on the medical prior to remove mediastinal interference tissues and then segment the suspicious lymph nodes, so as to reduce the interference of the negative samples and the difficulty of training, while enhancing the ability to segment mediastinal lymph nodes. Second, a global aggregation module and a dual attention module were introduced to improve the network's ability to classify multi-scale targets and backgrounds. Experimental results showed that the proposed algorithm achieved an accuracy of 0.707 9, a recall of 0.726 9, and a Dice score of 0.701 1 on the mediastinal lymph node dataset. It can be seen that the proposed algorithm is significantly better than other current mediastinal lymph node segmentation algorithms in terms of accuracy and Dice score, and can solve problems such as the big difference in size, sample imbalance and easily confused features of lymph nodes.
Reference | Related Articles | Metrics
Orthodontic path planning based on improved particle swarm optimization algorithm
XU Xiaoqiang, QIN Pinle, ZENG Jianchao
Journal of Computer Applications    2020, 40 (7): 1938-1943.   DOI: 10.11772/j.issn.1001-9081.2019112055
Abstract447)      PDF (1792KB)(653)       Save
Concerning the problem of tooth movement path planning in virtual orthodontic treatment system, a method of tooth movement path planning based on simplified mean particle swarm with normal distribution was proposed. Firstly, the mathematical models of single tooth and whole teeth were established. According to the characteristics of tooth movement, the orthodontic path planning problem was transformed into a constrained optimization problem. Secondly, based on the simplified particle swarm optimization algorithm, a Simplified Mean Particle Swarm Optimization based on the Normal distribution (NSMPSO) algorithm was proposed by introducing the idea of normal distribution and mean particle swarm optimization. Finally, a fitness function with high security was constructed from five aspects:translation path length, rotation angle, collision detection, single-stage tooth moving amount and rotation amount, so as to realize the orthodontic movement path planning. NSMPSO was compared with basic Particle Swarm Optimization (PSO) algorithm, the mean Particle Swarm Optimization (MPSO) algorithm and the Simplified Mean Particle Swarm Optimization with Dynamic adjustment of inertia weight(DSMPSO) algorithm. Results show that on Sphere, Griewank and Ackley, these three benchmark test functions, this improved algorithm tends to be stable and convergent within 50 iteration times, and has the fastest convergence speed and the highest convergence precision. Through the simulation experiments in Matlab, the optimal path obtained by the mathematical models and the improved algorithm is verified to be safe and reliable, which can provide assisted diagnosis for doctors.
Reference | Related Articles | Metrics
Abdominal MRI image multi-scale super-resolution reconstruction based on parallel channel-spatial attention mechanism
FAN Fan, GAO Yuan, QIN Pinle, WANG Lifang
Journal of Computer Applications    2020, 40 (12): 3624-3630.   DOI: 10.11772/j.issn.1001-9081.2020050670
Abstract390)      PDF (1111KB)(534)       Save
In order to effectively solve the problems of not obvious boundaries, unclear abdominal organ display caused by high-frequency detail loss as well as the inconvenient application of single-model single-scale reconstruction in the super-resolution reconstruction of abdominal Magnetic Resonance Imaging (MRI) images, a multi-scale super-resolution algorithm based on parallel channel-spatial attention mechanism was proposed. Firstly, parallel channel-spatial attention residual blocks were built. The correlation between the key area and high-frequency information was obtained by the spatial attention module, and the channel attention module was used to study the weights of the channels of the image to the key information response degree. At the same time, the feature extraction layer of the network was widened to increase the feature information flowing into the attention module. In addition, the weight normalized layer was added to ensure the training efficiency of the network. Finally, a multi-scale up-sampling layer was applied at the end of the network to increase the flexibility and applicability of the network. Experimental results show that, compared with the image super-resolution using very deep Residual Channel Attention Network (RCAN), the proposed algorithm has the Peak Signal-to-Noise Ratio (PSNR) averagely increased by 0.68 dB at the×2,×3 and×4 scales. The proposed algorithm effectively improves the reconstructed image quality.
Reference | Related Articles | Metrics
Multiple aerial infrared target tracking method based on multi-feature fusion and hierarchical data association
YANG Bo, LIN Suzhen, LU Xiaofei, LI Dawei, QIN Pinle, ZUO Jianhong
Journal of Computer Applications    2020, 40 (10): 3075-3080.   DOI: 10.11772/j.issn.1001-9081.2020030320
Abstract379)      PDF (1977KB)(496)       Save
An online multiple target tracking method for the aerial infrared targets was proposed based on the hierarchical data association to solve the tracking difficulty caused by the high similarity, large number and large false detections of the targets in star background. Firstly, according to the characteristics of the infrared scene, the location features, gray features and scale features of the targets were extracted. Secondly, the above three features were combined to calculate the preliminary relationship between the targets and the trajectories in order to obtain the real targets. Thirdly, the obtained real targets were classified according to their scales. The large-scale target data association was calculated by adding three features of appearance, motion and scale. The small-scale target data association was calculated by multiplying the two features of appearance and motion. Finally, the target assignment and trajectory updating were performed to the two types of targets respectively according to the Hungarian algorithm. Experimental results in a variety of complex conditions show that:compared with the online tracking method only using motion features, the proposed method has the tracking accuracy improved by 12.6%; compared with the method using multi-feature fusion, the hierarchical data correlation of the proposed method not only improves the tracking speed, but also increases the tracking accuracy by 19.6%. In summary, this method not only has high tracking accuracy, but also has good real-time performance and anti-interference ability.
Reference | Related Articles | Metrics
Benign and malignant diagnosis of thyroid nodules based on different ultrasound imaging
WU Kuan, QIN Pinle, CHAI Rui, ZENG Jianchao
Journal of Computer Applications    2020, 40 (1): 77-82.   DOI: 10.11772/j.issn.1001-9081.2019061113
Abstract557)      PDF (981KB)(528)       Save
In order to achieve more accurate diagnosis of benign and malignant of thyroid nodule ultrasound images and avoid unnecessary puncture or biopsy surgery, a feature combining method of conventional ultrasound imaging and ultrasound elastography based on Convolutional Neural Network (CNN) was proposed to improve the accuracy of benign and malignant classification of thyroid nodules. Firstly, large-scale natural image datasets were used by the convolutional network model for pre-training, and the feature parameters were transferred to the ultrasound image domain by transfer learning to generate depth features and process small samples. Then, the depth feature maps of conventional ultrasound imaging and ultrasound elastography were combined to form a hybrid feature space. Finally, the classification task was completed in the hybrid feature space, and an end-to-end convolution network model was constructed. The experiments were carried out on 1156 images, the proposed method had the accuracy of 0.924, which was higher than that of other single data source methods. The experimental results show that, the edge and texture features of the image are shared by the shallow convolutions, the abstract features of the high-level convolutions are related to the specific classification tasks, and the transfer learning method can solve the problem of insufficient data samples. At the same time, the elastic ultrasound image can objectively quantify the lesion hardness of thyroid nodules, and with the combination of the texture contour features of conventional ultrasound image, the mixed features can more fully describe the differences between different lesions. Therefore, this method can effectively and accurately classify the thyroid nodules, reduce the pain of patients, and provide doctors with more accurate auxiliary diagnostic information.
Reference | Related Articles | Metrics
Medical image super-resolution reconstruction based on depthwise separable convolution and wide residual network
GAO Yuan, WANG Xiaochen, QIN Pinle, WANG Lifang
Journal of Computer Applications    2019, 39 (9): 2731-2737.   DOI: 10.11772/j.issn.1001-9081.2019030413
Abstract478)      PDF (1073KB)(457)       Save

In order to improve the quality of medical image super-resolution reconstruction, a wide residual super-resolution neural network algorithm based on depthwise separable convolution was proposed. Firstly, the depthwise separable convolution was used to improve the residual block of the network, widen the channel of the convolution layer in the residual block, and pass more feature information into the activation function, making the shallow low-level image features in the network easier transmitted to the upper level, so that the quality of medical image super-resolution reconstruction was enhanced. Then, the network was trained by group normalization, the channel dimension of the convolutional layer was divided into groups, and the normalized mean and variance were calculated in each group, which made the network training process converge faster, and solved the difficulty of network training because the depthwise separable convolution widens the number of channels. Meanwhile, the network showed better performance. The experimental results show that compared with the traditional nearest neighbor interpolation, bicubic interpolation super-resolution algorithm and the super-resolution algorithm based on sparse expression, the medical image reconstructed by the proposed algorithm has richer texture detail and more realistic visual effects. Compared with the super-resolution algorithm based on convolutional neural network, the super-resolution neural network algorithm based on wide residual and the generative adversarial-network super-resolution algorithm, the proposed algorithm has a significant improvement in PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural SIMilarity index).

Reference | Related Articles | Metrics
Grayscale image colorization algorithm based on dense neural network
ZHANG Na, QIN Pinle, ZENG Jianchao, LI Qi
Journal of Computer Applications    2019, 39 (6): 1816-1823.   DOI: 10.11772/j.issn.1001-9081.2018102100
Abstract474)      PDF (1365KB)(351)       Save
Aiming at the problem of low information extraction rate of traditional methods and the unideal coloring effect in the grayscale image colorization field, a grayscale image colorization algorithm based on dense neural network was proposed to improve the colorization effect and make the information of image be better observed by human eyes. With making full use of the high information extraction efficiency of dense neural network, an end-to-end deep learning model was built and trained to extract multiple types of information and features in the image. During the training, the loss of the network output result (such as information loss and classification loss) was gradually reduced by comparing with the original image. After the training, with only a grayscale image input into the trained network, a full and vibrant vivid color image was able to be obtained. The experimental results show that the introduction of dense network can effectively alleviate the problems such as color leakage, loss of detail information and low contrast, during the colorization process. The coloring effect has achieved significant improvement compared with the current advanced coloring methods based on Visual Geometry Group (VGG)-net, U-Net, dual stream network structure, Residual Network (ResNet), etc.
Reference | Related Articles | Metrics
Non-rigid multi-modal brain image registration by using improved Zernike moment based local descriptor and graph cuts discrete optimization
WANG Lifang, WANG Yanli, LIN Suzhen, QIN Pinle, GAO Yuan
Journal of Computer Applications    2019, 39 (2): 582-588.   DOI: 10.11772/j.issn.1001-9081.2018061423
Abstract417)      PDF (1232KB)(328)       Save
When noise and intensity distortion exist in brain images, the method based on structural information cannot accurately extract image intensity information, edge and texture features at the same time. In addition, the computational complexity of continuous optimization is relatively high. To solve these problems, according to the structural information of the image, a non-rigid multi-modal brain image registration method based on Improved Zernike Moment based Local Descriptor (IZMLD) and Graph Cuts (GC) discrete optimization was proposed. Firstly, the image registration problem was regarded as the discrete label problem of Markov Random Field (MRF), and the energy function was constructed. The two energy terms were composed of the pixel similarity and smoothness of the displacement vector field. Secondly, a smoothness constraint based on the first derivative of the deformation vector field was used to penalize displacement labels with sharp changes between adjacent pixels. The similarity metric based on IZMLD was used as a data item to represent pixel similarity. Thirdly, the Zernike moments of the image patches were used to calculate the self-similarity of the reference image and the floating image in the local neighborhood and construct an effective local descriptor. The Sum of Absolute Difference (SAD) between the descriptors was taken as the similarity metric. Finally, the whole energy function was discretized and its minimum value was obtained by using an extended optimization algorithm of GC. The experimental results show that compared with the registration method based on the Sum of Squared Differences on Entropy images (ESSD), the Modality Independent Neighborhood Descriptor (MIND) and the Stochastic Second-Order Entropy Image (SSOEI), the mean of the target registration error of the proposed method was decreased by 18.78%, 10.26% and 8.89% respectively; and the registration time of the proposed method was shortened by about 20 s compared to the continuous optimization algorithm. The proposed method achieves efficient and accurate registration for images with noise and intensity distortion.
Reference | Related Articles | Metrics
Automatic recognition algorithm of cervical lymph nodes using adaptive receptive field mechanism
QIN Pinle, LI Pengbo, ZHANG Ruiping, ZENG Jianchao, LIU Shijie, XU Shaowei
Journal of Computer Applications    2019, 39 (12): 3535-3540.   DOI: 10.11772/j.issn.1001-9081.2019061069
Abstract498)      PDF (965KB)(407)       Save
Aiming at the problem that the deep learning network model applied to medical image target detection only has a fixed receptive field and cannot effectively detect the cervical lymph nodes with obvious morphological and scale differences, a new recognition algorithm based on adaptive receptive field mechanism was proposed, applying deep learning to the automatic recognition of cervical lymph nodes in complete three-dimensional medical images at the first time. Firstly, the semi-random sampling method was used to crop the medical sequence images to generate the grid-based local image blocks and the corresponding truth labels. Then, the DeepNode network based on the adaptive receptive field mechanism was constructed and trained through the local image blocks and labels. Finally, the trained DeepNode network model was used for prediction. By inputting the whole sequence images, the cervical lymph node recognition results corresponding to the whole sequence was obtained end-to-end and quickly. On the cervical lymph node dataset, the cervical lymph node recognition using the DeepNode network has the recall rate of 98.13%, the precision of 97.38%, and the number of false positives per scan is only 29, and the time consumption is relatively shorter. The analysis of the experimental results shows that compared with current algorithms such as the combination of two-dimensional and three-dimensional convolutional neural networks, the general three-dimensional object detection and the weak supervised location based recognition, the proposed algorithm can realize the automatic recognition of cervical lymph nodes and obtain the best recognition results. The algorithm is end-to-end, simple and efficient, easy to be extended to three-dimensional target detection tasks for other medical images and can be applied to clinical diagnosis and treatment.
Reference | Related Articles | Metrics
Medical image fusion algorithm based on generative adversarial residual network
GAO Yuan, WU Fan, QIN Pinle, WANG Lifang
Journal of Computer Applications    2019, 39 (12): 3528-3534.   DOI: 10.11772/j.issn.1001-9081.2019050937
Abstract702)      PDF (1184KB)(471)       Save
In the traditional medical image fusion, it is necessary to manually set the fusion rules and parameters by using prior knowledge, which leads to the uncertainty of fusion effect and the lack of detail expression. In order to solve the problems, a Computed Tomography (CT)/Magnetic Resonance (MR) image fusion algorithm based on improved Generative Adversarial Network (GAN) was proposed. Firstly, the network structures of generator and discriminator were improved. In the design of generator network, residual block and fast connection were used to deepen the network structure, so as to better capture the deep image information. Then, the down-sampling layer of the traditional network was removed to reduce the information loss during image transmission, and the batch normalization was changed to the layer normalization to better retain the source image information, and the depth of the discriminator network was increased to improve the network performance. Finally, the CT image and the MR image were connected and input into the generator network to obtain the fused image, and the network parameters were continuously optimized through the loss function, and the model most suitable for medical image fusion was trained to generate the high-quality image. The experimental results show that, the proposed algorithm is superior to Discrete Wavelet Transformation (DWT) algorithm, NonSubsampled Contourlet Transform (NSCT) algorithm, Sparse Representation (SR) algorithm and Sparse Representation of classified image Patches (PSR) algorithm on Mutual Information (MI), Information Entropy (IE) and Structural SIMilarity (SSIM). The final fused image has rich texture and details. At the same time, the influence of human factors on the stability of the fusion effect is avoided.
Reference | Related Articles | Metrics
Environmental sound classification method based on Mel-frequency cepstral coefficient, deep convolution and Bagging
WANG Tianrui, BAO Qianyue, QIN Pinle
Journal of Computer Applications    2019, 39 (12): 3515-3521.   DOI: 10.11772/j.issn.1001-9081.2019040678
Abstract395)      PDF (991KB)(401)       Save
The traditional environmental sound classification model does not fully extract the features of environmental sound, and the full connection layer of conventional neural network is easy to cause over-fitting when the network is used for environmental sound classification. In order to solve the problems, an environmental sound classification method combining with Mel-Frequency Cepstral Coefficient (MFCC), deep convolution and Bagging algorithm was proposed. Firstly, for the original audio file, the MFCC model was established by using pre-emphasis, windowing, discrete Fourier transform, Mel filter transformation, discrete cosine mapping. Secondly, the feature model was input into the convolutional depth network for the second feature extraction. Finally, based on reinforcement learning, the Bagging algorithm was adopted to integrate the linear discriminant analyzer, Support Vector Machine (SVM), softmax regression and eXtreme Gradient Boost (XGBoost) models to predict the network output results by voting prediction. The experimental results show that, the proposed method can effectively improve the feature extraction ability of environmental sound and the anti-over-fitting ability of deep network in environmental sound classification.
Reference | Related Articles | Metrics
Indoor crowd detection network based on multi-level features and hybrid attention mechanism
SHEN Wenxiang, QIN Pinle, ZENG Jianchao
Journal of Computer Applications    2019, 39 (12): 3496-3502.   DOI: 10.11772/j.issn.1001-9081.2019061075
Abstract636)      PDF (1190KB)(602)       Save
In order to solve the problem of indoor crowd target scale and attitude diversity and confusion of head targets with surrounding objects, a new Network based on Multi-level Features and hybrid Attention mechanism for indoor crowd detection (MFANet) was proposed. It is composed of three parts:feature fusion module, multi-scale dilated convolution pyramid feature decomposition module, and hybrid attention module. Firstly, by combining the information of shallow features and intermediate layer features, a fusion feature containing context information was formed to solve the problem of the lack of semantic information and the weakness of classification ability of the small targets in the shallow feature map. Then, with the characteristics of increasing the receptive field without increasing the parameters, the dilated convolution was used to perform the multi-scale decomposition on the fusion features to form a new small target detection branch, realizing the positioning and detection of the multi-scale targets by the network. Finally, the local fusion attention module was used to integrate the global pixel correlation space attention and channel attention to enhance the features with large contribution on the key information in order to improve the ability of distinguishing target from background. The experimental results show that the proposed method achieves an accuracy of 0.94, a recall rate of 0.91 and an F1 score of 0.92 on the indoor monitoring scene dataset SCUT-HEAD. All of these three are significantly better than those of other algorithms currently used for indoor crowd detection.
Reference | Related Articles | Metrics
Automatic recognition algorithm for cervical lymph nodes using cascaded fully convolutional neural networks
QIN Pinle, LI Pengbo, ZENG Jianchao, ZHU Hui, XU Shaowei
Journal of Computer Applications    2019, 39 (10): 2915-2922.   DOI: 10.11772/j.issn.1001-9081.2019030510
Abstract376)      PDF (1267KB)(383)       Save
The existing automatic recognition algorithms for cervical lymph nodes have low efficiency, and the overall false positive removal are unsatisfied, so a cervical lymph node detection algorithm using cascaded Fully Convolutional Neural Networks (FCNs) was proposed. Firstly, combined with the prior knowledge of doctors, the cascaded FCNs were used for preliminary identification, that was, the first FCN was used for extracting the cervical lymph node region from the Computed Tomography (CT) image of head and neck. Then, the second FCN was used to extract the lymph node candidate samples from the region, and merging them at the three-dimensional (3D) level to generate a 3D image block. Finally, the proposed feature block average pooling method was introduced into the 3D classification network, and the 3D input image blocks with different scales were classified into two classes to remove false positives. On the cervical lymph node dataset, the recall of cervical lymph nodes identified by cascaded FCNs is up to 97.23%, the classification accuracy of the 3D classification network with feature block average pooling can achieve 98.7%. After removing false positives, the accuracy of final result reaches 93.26%. Experimental results show that the proposed algorithm can realize the automatic recognition of cervical lymph nodes with high recall and accuracy, which is better than the current methods reported in the literatures; it is simple and efficient, easy to extend to other tasks of 3D medical images recognition.
Reference | Related Articles | Metrics
Medical image super-resolution algorithm based on deep residual generative adversarial network
GAO Yuan, LIU Zhi, QIN Pinle, WANG Lifang
Journal of Computer Applications    2018, 38 (9): 2689-2695.   DOI: 10.11772/j.issn.1001-9081.2018030574
Abstract2049)      PDF (1167KB)(999)       Save
Aiming at the ambiguity caused by the loss of details in the super-resolution reconstruction of medical images, a medical image super-resolution algorithm based on deep residual Generative Adversarial Network (GAN) was proposed. Firstly, a generative network and a discriminative network were designed in the method. High resolution images were generated by the generative network and the authenticities of the images were identified by the discriminative network. Secondly, a resize-convolution was used to eliminate checkerboard artifacts in the upsampling layer of the designed generative network and the batch-normalization layer of the standard residual block was removed to optimize the network. Also, the number of feature maps was further increased in the discriminative network and the network was deepened to improve the network performance. Finally, the network was continuously optimized according to the generative loss and the discriminative loss to guide the generation of high-quality images. The experimental results show that compared with bilinear interpolation, nearest-neighbor interpolation, bicubic interpolation, deeply-recursive convolutional network for image super-resolution and Super-Resolution using a Generative Adversarial Network (SRGAN), the improved algorithm can reconstruct the images with richer texture and more realistic vision. Compared with SRGAN, the proposed algorithm has an increase of 0.21 dB and 0.32% in Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM). It provides a deep residual generative adversarial network method for the theoretical research of medical image super-resolution, which is reliable and effective in practical applications.
Reference | Related Articles | Metrics
Multi-modal brain image fusion method based on adaptive joint dictionary learning
WANG Lifang, DONG Xia, QIN Pinle, GAO Yuan
Journal of Computer Applications    2018, 38 (4): 1134-1140.   DOI: 10.11772/j.issn.1001-9081.2017092291
Abstract656)      PDF (1149KB)(719)       Save
Currently, the adaptivity of global training dictionary is not strong for brain medical images, and the "max-L 1" rule may cause gray inconsistency in the fused image, which cannot get satisfactory image fusion results. A multi-modal brain image fusion method based on adaptive joint dictionary learning was proposed to solve this problem. Firstly, an adaptive joint dictionary was obtained by combining sub-dictionaries which were adaptively learned from registered source images using improved K-means-based Singular Value Decomposition ( K-SVD) algorithm. The sparse representation coefficients were computed by the Coefficient Reuse Orthogonal Matching Pursuit (CoefROMP) algorithm by using the adaptive joint dictionary. Furthermore, the activity level measurement of source image patches was regarded as the "multi-norm" of the sparse representation coefficients, and an unbiased rule combining "adaptive weighed average" and "choose-max" was proposed, to chose fusion rule according to the similarity of "multi-norm" of the sparse representation coefficients. Then, the sparse representation coefficients were fused by the rule of "adaptive weighed average" when the similarity of "multi-norm" was greater than the threshold, otherwise the rule of "choose-max" was used. Finally, the fusion image was reconstructed according to the fusion coefficient and the adaptive joint dictionary. The experimental results show that, compared with the other three methods based on multi-scale transform and five methods based on sparse representation, the fusion images of the proposed method have more image detail information, better image contrast and sharpness, and clearer edge of lesion, the mean values of the objective parameters such as standard deviation, spatial frequency, mutual information, the gradient based index, the universal image quality based index and the mean structural similarity index under three groups of experimental conditions are 71.0783, 21.9708, 3.6790, 0.6603, 0.7352 and 0.7339 respectively. The proposed method can be used for clinical diagnosis and assistant treatment.
Reference | Related Articles | Metrics
Non-rigid multi-modal medical image registration based on multi-channel sparse coding
WANG Lifang, CHENG Xi, QIN Pinle, GAO Yuan
Journal of Computer Applications    2018, 38 (4): 1127-1133.   DOI: 10.11772/j.issn.1001-9081.2017102392
Abstract575)      PDF (1067KB)(423)       Save
Sparse coding similarity measure has good robustness to gray-scale offset field in non-rigid medical image registration, but it is only suitable for single-modal medical image registration. A non-rigid multi-modal medical image registration method based on multi-channel sparse coding was proposed to solve this problem. In this method, the multi-modal registration was regarded as a multi-channel registration, with each modal running in a separate channel. At first, the two registered images were synthesized and regularized separately, and then they were divided into channels and image blocks. The K-means-based Singular Value Decomposition ( K-SVD) algorithm was used to train the image blocks in each channel to get the analytical dictionary and sparse coefficients, and each channel was weightedy summated. The multilayer P-spline free transform model was used to simulate the non-rigid geometric deformation, and the gradient descent method was used to optimize the objective function. The experimental results show that compared with multi-modal similarity measure such as local mutual information, Multi-Channel Local Variance and Residual Complexity (MCLVRC), Multi-Channel Sparse-Induced Similarity Measure (MCSISM) and Multi-Channel Rank Induced Similarity Measure (MCRISM), the root mean square error of the proposed method is decreased by 30.86%, 22.24%, 26.84% and 16.49% respectively. The proposed method can not only effectively overcome the influence of gray-scale offset field on registration in multi-modal medical image registration, but also improve the accuracy and robustness of registration.
Reference | Related Articles | Metrics
Improved algorithm of image super resolution based on residual neural network
WANG Yining, QIN Pinle, LI Chuanpeng, CUI Yuhao
Journal of Computer Applications    2018, 38 (1): 246-254.   DOI: 10.11772/j.issn.1001-9081.2017061461
Abstract732)      PDF (1533KB)(650)       Save
To efficiently improve the effects of image Super Resolution (SR), a multi-stage cascade residual convolution neural network model was proposed. Firstly, two-stage SR image reconstruction method was used to reconstruct the 2-times SR image and then reconstruct the 4-times SR image; secondly, residual layer and jump layer were used to predict the texture information of the high resolution space in the first and second stages, and deconvolution layer was used to reconstruct 2-times and 4-times SR images. Finally, two multi-task loss functions were constructed respectively by the results of two stages. And the loss of the first stage guided that of the second one, which accelerated the network training and enhanced the supervision and guidance of the network learning. The experimental results show that compared with bilinear algorithm, bicubic algorithm, Super Resolution using Convolutional Neural Network (SRCNN) algorithm and Fast Super Resolution Convolutional Neural Network (FSRCNN) algorithm, the proposed model can better construct the details and texture of images, which avoids the image over smoothing after iterating, and achieves higher Peak Signal-to-Noise Ratio (PSNR) and Mean Structural SIMilarity (MSSIM).
Reference | Related Articles | Metrics
CT/MR brain image fusion method via improved coupled dictionary learning
DONG Xia, WANG Lifang, QIN Pinle, GAO Yuan
Journal of Computer Applications    2017, 37 (6): 1722-1727.   DOI: 10.11772/j.issn.1001-9081.2017.06.1722
Abstract691)      PDF (1146KB)(760)       Save
The dictionary training process is time-consuming, and it is difficult to obtain accurate sparse representation by using a single dictionary to express brain medical images currently, which leads to the inefficiency of image fusion. In order to solve the problems, a Computed Tomography (CT)/Magnetic Resonance (MR) brain image fusion method via improved coupled dictionary learning was proposed. Firstly, the CT and MR images were regarded as the training set, and the coupled CT and MR dictionary were obtained through joint dictionary training based on improved K-means-based Singular Value Decomposition (K-SVD) algorithm respectively. The atoms in CT and MR dictionary were regarded as the features of training images, and the feature indicators of the dictionary atoms were calculated by the information entropy. Then, the atoms with the smaller difference feature indicators were regarded as the common features, the rest of the atoms were considered as the innovative features. A fusion dictionary was obtained by using the rule of "mean" and "choose-max" to fuse the common features and innovative features of the CT and MR dictionary separately. Further more, the registered source images were compiled into column vectors and subtracted the mean value. The accurate sparse representation coefficients were computed by the Coefficient Reuse Orthogonal Matching Pursuit (CoefROMP) algorithm under the effect of the fusion dictionary, the sparse representation coefficients and mean vector were fused by the rule of "2-norm max" and "weighted average" separately. Finally, the fusion image was obtained via reconstruction. The experimental results show that, compared with three methods based on multi-scale transform and three methods based on sparse representation, the image visual quality fused by the proposed method outperforms on the brightness, sharpness and contrast, the mean value of the objective parameters such as mutual information, the gradient based, the phase congruency based and the universal image quality indexes under three groups of experimental conditions are 4.1133, 0.7131, 0.4636 and 0.7625 respectively, the average time in the dictionary learning phase under 10 experimental conditions is 5.96 min. The proposed method can be used for clinical diagnosis and assistant treatment.
Reference | Related Articles | Metrics
Medical image fusion algorithm based on linking synaptic computation network
GAO Yuan, JIA Ziting, QIN Pinle, WANG Lifang
Journal of Computer Applications    2017, 37 (12): 3554-3557.   DOI: 10.11772/j.issn.1001-9081.2017.12.3554
Abstract463)      PDF (871KB)(833)       Save
The traditional fusion methods based on Pulse Coupled Neural Network (PCNN) have the shortcomings of too many parameters, the parameters and number of network iterations difficult to accurately set, and poor fusion effect. In order to solve the problems, a new image fusion algorithm using the connection item (L item) of Linking Synaptic Computing Network (LSCN) model was proposed. Firstly, the two images to be fused was input into the LSCN model respectively. Secondly, the L term was used to replace the ignition frequency in the traditional PCNN as the output. Then, the iteration was terminated by the multi-pass operation. Finally, the pixels of the fused image were obtained by comparing the values of L terms. The theoretical analysis and experimental results show that, compared with the image fusion algorithms using the improved PCNN model and the new model proposed on the basis of PCNN model, the fusion images generated by the proposed algorithm have better visual effects. In addition, compared with the fusion algorithm of LSCN using ignition frequence as the output, the proposed algorithm is all superior in edge information evaluation factor, information entropy, standard deviation, space frequency, average grads. The proposed algorithm is simple and convenient, which not only reduces the number of parameters to be determined, reduces the computational complexity, but also solves the problem that the number of iterations in the traditional model is difficult to be determined.
Reference | Related Articles | Metrics
Defogging algorithm based on HSI luminance component and RGB space
LI Huihui, QIN Pinle, LIANG Jun
Journal of Computer Applications    2016, 36 (5): 1378-1382.   DOI: 10.11772/j.issn.1001-9081.2016.05.1378
Abstract371)      PDF (834KB)(494)       Save
The purpose of image defogging is to remove the fog effect from image of surveillance video to improve the fog haze image visual effect. Presently, there is only a comparison between images before and after defogging, and the results are often distorted seriously and oversatuarted. Thereby, it is hard to ensure the clear details and the integrity of color information simultaneously. For tackling above problems, a new optimized method for images recovering was proposed with combination of HIS luminance component and RGB space, which was based on atmosphere scattering model and optical principals. In this method the relative depth relationship of image scene was analyzed by comparing images in fine and haze days with help of the most eye-sensitive HSI luminance component. Finally, by utilizing atmosphere scattering model and the comparison of depth of field, the recovering and result evaluation were conducted on the video obtained in haze. The experimental results show that, compared with the defogging methods calculated in RGB space, the proposed method has more clear defogging results and smaller degree of color distortion and oversaturation.
Reference | Related Articles | Metrics