[1] 曾倩, 崔芳芳, 宇传华, 等. 中国癌症发病、死亡现状与趋势分析[J]. 中国卫生统计,2016,33(2):321-323.(ZENG Q,CUI F F, YU C H,et al. Analysis of current status and trend of cancer incidence and death in China[J]. Chinese Journal of Health Statistics,2016,33(2):321-323.) [2] QUAN L,ZHANG D,YANG Y,et al. Segmentation of tumor ultrasound image via region-based Ncut method[J]. Wuhan University Journal of Natural Sciences,2013,18(4):313-318 [3] ZHUANG Z,LEI N,RAJ A N,et al. Application of fractal theory and fuzzy enhancement in ultrasound image segmentation[J]. Medical and Biological Engineering and Computing,2019,57(3):623-632. [4] ALOM M Z, YAKOPCIC C, TAHA T M, et al. Nuclei segmentation with Recurrent Residual convolutional neural networks based U-Net(R2U-Net)[C]//Proceedings of 2018 IEEE National Aerospace and Electronics Conference. Piscataway:IEEE,2018:228-233. [5] NANDAMURI S,CHINA D,MITRA P,et al. SUMNet:fully convolutional model for fast segmentation of anatomical structures in ultrasound volumes[C]//Proceedings of the IEEE 16th International Symposium on Biomedical Imaging. Piscataway:IEEE,2019:1729-1732. [6] 迟剑宁, 于晓升, 张艺菲. 融合深度网络和浅层纹理特征的甲状腺结节癌变超声图像诊断[J]. 中国图象图形学报,2018,23(10):1582-1593.(CHI J N,YU X S,ZHANG Y F. Thyroid nodule malignantrisk detection in ultrasound image by fusing deep and texture features[J]. Journal of Image and Graphics,2018,23(10):1582-1593.) [7] ZHAO T,WU X. Pyramid feature attention network for saliency detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3080-3089. [8] QIN P,WU K,HU Y,et al. Diagnosis of benign and malignant thyroid nodules using combined conventional ultrasound and ultrasound elasticity imaging[J]. IEEE Journal of Biomedical and Health Informatics,2020,24(4):1028-1036. [9] CHEN S, TAN X, WANG B, et al. Reverse attention-based residual network for salient object detection[J]. IEEE Transactions on Image Processing,2020,29:3763-3776. [10] 李晓光, 付陈平, 李晓莉, 等. 面向多尺度目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报,2019, 31(7):1095-1101.(LI X G,FU C P,LI X L,et al. Improved Faster R-CNN for multi-scale object detection[J]. Journal of Computer Aided-Design and Computer Graphics,2019,31(7):1095-1101.) [11] CHEN L C,ZHU Y,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:833-851. [12] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [13] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [14] ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6230-6239. [15] PENG C,ZHANG X,YU G,et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1743-1751. [16] WEI J,WANG S,HUNAG Q. F3Net:fusion,feedback and focus for salient object detection[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2020:12321-12328. [17] WANG Z,SIMONCELLI E P,BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals,Systems and Computers. Piscataway:IEEE,2003:1398-1402. [18] WUNDERLING T,GOLLA B,POUDEL P,et al. Comparison of thyroid segmentation techniques for 3D ultrasound[C]//Proceedings of the SPIE 10133,Medical Imaging 2017:Image Processing. Bellingham,WA:SPIE,2017:No. 1013317. [19] GU Z,CHENG J,FU H,et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging,2019,38(10):2281-2292. [20] QIN X,ZHANG Z,HUANG C,et al. BASNet:boundary-aware salient object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:7471-7481. |