[1] PELED S, YESHURUN Y. Superresolution in MRI:application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine Official Journal of the Society of Magnetic Resonance in Medicine, 2001, 45(1):29. [2] SHI W, CABALLERO J, LEDIG C, et al. Cardiac image super-resolution with global correspondence using multi-atlas patchmatch[C]//MICCAI 2013:Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin:Springer, 2013:9-16. [3] THORNTON M W, ATKINSON P M, HOLLAND D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J]. International Journal of Remote Sensing, 2006, 27(3):473-491. [4] GUNTURK B K, BATUR A U, ALTUNBASAK Y, et al. Eigenface-domain super-resolution for face recognition[J]. IEEE Transactions on Image Processing, 2003, 12(5):597-606. [5] ZHANG L, ZHANG H, SHEN H, et al. A super-resolution reconstruction algorithm for surveillance images[J]. Signal Processing, 2010, 90(3):848-859. [6] 苏衡,周杰,张志浩.超分辨率图像重建方法综述[J].自动化学报,2013,39(8):1202-1213.(SU H, ZHOU J, ZHANG Z H. A summary of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213.) [7] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1981, 29(6):1153-1160. [8] 袁琪,荆树旭.改进的序列图像超分辨率重建方法[J].计算机应用,2009,29(12):3310-3313.(YUAN Q, JIN S X. Improved sequence image super-resolution reconstruction method[J]. Journal of Computer Applications, 2009, 29(12):3310-3313.) [9] TIMOFTE R, DE V, GOOL L V. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2013:1920-1927. [10] TIMOFTE R, SMET V D, GOOL L V. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 2014 Asian Conference on Computer Vision. Berlin:Springer, 2014:111-126. [11] YANG C Y, YANG M H. Fast direct super-resolution by simple functions[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2013:561-568. [12] YANG J, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]//CVPR 2008:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2008:1-8. [13] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [14] WANG J, ZHU S, GONG Y. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern Recognition Letters, 2010, 31(1):1-10. [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 International Conference on Neural Information Processing Systems. West Chester, OH:Curran Associates Inc., 2012:1097-1105. [16] DONG C, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//ECCV 2014:Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:184-199. [17] DONG C, CHEN C L, TANG X. Accelerating the super-resolution convolutional neural network[C]//ECCV 2016:Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:391-407. [18] SUN J, SHUM H Y. Image super-resolution using gradient profile prior:US9064476[P]. 2015-06-23. [19] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 2010 International Conference on International Conference on Machine Learning. Madison, WI:Omnipress, 2010:807-814. [20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//CVPR 2016:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [21] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:694-711. [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-03-21]. https://arxiv.org/abs/1409.1556. [23] REN S, HE K, GIRSHICK R, et al. Object detection networks on convolutional feature maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7):1476-1481. [24] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training very deep networks[EB/OL].[2017-03-20]. https://arxiv.org/abs/1507.06228. [25] SAXE A M, MCCLELLAND J L, GANGULI S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks[EB/OL].[2017-03-12]. http://arxiv.org/abs/1312.6120. [26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-03-10]. https://arxiv.org/abs/1409.1556. [27] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference.[S.l.]:BMVC Press, 2012:135-1-135-10. [28] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 2010 International Conference on Curves and Surfaces. Berlin:Springer, 2010:711-730. [29] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:694-711. |