In view of the lack of trust mechanism in the existing multi-organization collaborative data sharing framework, the problems of data privacy and security risks, data consistency and regulatory issues regarding the usage of shared data, with the help of the properties of blockchain, a multi-organization collaborative data sharing scheme with dual authorization was proposed to solve the access problem of collaborative management of shared data between various organizational entities through dual authorization. Firstly, Attribute-Based Access Control (ABAC) technology was utilized to manage shared data using a set of attributes of different organizations to achieve the first layer of authorization and prevent unauthorized access by unauthorized users. Secondly, based on access control, a multi-signature protocol was introduced for the second layer of authorization, regulating the access to shared data of collaborative organizations, thereby enhancing access security. Experimental results show that the when the number of collaborative organizations is 4,the overall time cost of system is 21 s. When the number of collaborative organizations increases to 10, the proposed scheme can still maintain low time overhead, so the proposed scheme can meet the needs of safety and practicability in actual production at the same time.
Most of the existing target detection algorithms rely on large?scale annotation datasets to ensure the accuracy of detection, however, it is difficult for some scenes to obtain a large number of annotation data and it consums a lot of human and material resources. In order to resolve this problem, a Few?Shot Target Detection method based on Negative Margin loss (NM?FSTD) was proposed. The negative margin loss method belonging to metric learning in Few?Shot Learning (FSL) was introduced into target detection, which could avoid mistakenly mapping the samples of the same novel classes to multiple peaks or clusters and helping to the classification of novel classes in few?shot target detection. Firstly, a large number of training samples and the target detection framework based on negative margin loss were used to train the model with good generalization performance. Then, the model was finetuned through a small number of labeled target category samples. Finally, the finetuned model was used to detect the new sample of target category. To verify the detection effect of NM?FSTD, MS COCO was used for training and evaluation. Experimental results show that the AP50 of NM?FSTD reaches 22.8%; compared with Meta R?CNN (Meta Regions with CNN features) and MPSR (Multi?Scale Positive Sample Refinement), the accuracies are improved by 3.7 and 4.9 percentage points, respectively. NM?FSTD can effectively improve the detection performance of target categories in the case of few?shot, and solve the problem of insufficient data in the field of target detection.
Concerning the problems of centralized functions of notary nodes and low cross?chain transaction efficiency in notary mechanism, a cross?chain interaction safety model based on notary groups was proposed. Firstly, notary nodes were divided into three kinds of roles, i.e. transaction verifiers, connectors and supervisors, and multiple transactions with consensus were packaged to a big deal by transaction verification group, and the threshold signature technique was used to sign it. Secondly, the confirmed transactions were placed in a cross?chain wait?to?be?transferred pool, some transactions were selected randomly by the connectors, and the technologies such as secure multiparty computation and fully homomorphic encryption were used to judge the authenticity of these transactions. Finally, if the hash values of all eligible transactions were true and reliable as well as verified by the transaction verification group, a batch task of multiple cross?chain transactions was able to be continued by the connector and be interacted with the blockchain in information. Security analysis shows that the proposed cross?chain mechanism is helpful to protect the confidentiality of information and the integrity of data, realizes the collaborative computing of data without leaving the database, and guarantees the stability of the cross?chain system of blockchain. Compared with the traditional cross?chain interaction security model, the complexity of the number of signatures and the number of notary groups that need to be assigned decreases from O ( n ) to O ( 1 ) .
To effectively improve the denoising effect of the original anisotropic diffusion model that used only the 4 neighborhood pixels information and ignored the diagonal neighborhood pixels information of the pixel to be repaired in the image denoising process, a image denoising algorithm using UK-flag shaped anisotropic diffusion model was proposed. This model not only made full use of the reference information of the 4 neighborhood pixels as in original algorithm, but also used another 4 diagonal neighborhood pixels information in the denoising process. Then the model using the 8 direction pixels information for image denoising was presented, and it was proved to be rational. The proposed algorithm, the original algorithm, and an improved similar algorithm were used to remove the noise from 4 images with noise. The experimental results show that the proposed algorithm has an average increase of 1.90dB and 1.43dB in Peak Signal-to-Noise Ratio (PSNR) value respectively, and an average increase of 0.175 and 0.1 in Mean Structure Similitary Index (MSSIM) value respectively, compared with the original algorithm and the improved similar algorithm, which concludes that the proposed algorithm is more suitable for image denoising. algorithm not only made full use of the reference information of the 4 neighborhood pixels as in original algorithm, but also another 4 diagonal neighborhood pixels information was used in the denoising process, and the algorithm was proved to be rationality. The experimental results showed that the proposed algorithm could increase the PSNR (peak signal-to-noise ratio) value 1.69db, and the MSSIM(mean structure similitary index) value 0.14, compared with the other similar algorithms in image denoising, which conclud that this proposed algorithm is more suitable for image denoising.
Outdoor images captured in bad weather often have poor qualities in terms of visibility and contrast. A simple and effective algorithm was designed to remove haze. Firstly, the spatial high-pass filtering was used to suppress the low-frequency component and enhance the edge detail, and then the contrast-stretching transformation was used to acquire an image with high dynamic range. Finally, the exposure fusion method based on Laplacian pyramid was utilized to fuse the two results above and get the defogged image. The experimental results show that the proposed method has a good performance on enhancing images that are degraded by fog, dust or underwater and it is appropriate for real-time applications.
For the traditional player skill estimation algorithms based on probabilistic graphical model neglect the first-move advantage (or home play advantage) which affects estimation accuracy, a new method to model the first-move advantage was proposed. Based on the graphical model, the nodes of first-move advantage were introduced and added into player's skills. Then, according to the game results, true skills and first-move advantage of palyers were caculated by Bayesian learning method. Finally, predictions for the upcoming matches were made using those estimated results. Two real world datasets were used to compare the proposed method with the traditional model that neglect the first-move advantage. The result shows that the proposed method can improve average estimation accuracy noticeably.
A block resource scheduling strategy for remote sensing images in multi-line server environment was proposed with the problems of huge amount of remote sensing data, heavy server load caused by multi-user concurrent requests which decreased the transmission efficiency of remote sensing images. To improve the transmission efficiency, an Improved Ant Colony Optimization (IACO) algorithm was used, which introduced a line waiting factor γ to dynamically select the optimal transmission lines. Intercomparison experiments among IACO, Ant Colony Optimization (ACO), Max-min, Min-min, and Random algorithm were conducted and IACO algorithm finished the tasks in the client and executed in the server with the shortest time, and the larger the amount of tasks, the more obvious the effect. Besides, the line resource utilization of IACO was the highest. The simulation results show that: combining multi-line server block scheduling strategy with IACO algorithm can raise the speed of remote sensing image transmission and the utilization of line resource to some degree.