[1] LEE D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401:788-791. [2] LIU W, ZHENG N. Non-negative matrix factorization based methods for object recognition[J]. Pattern Recognition Letters, 2004, 25(8):893-897. [3] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[J]. Neural Information Processing Systems, 2000(12):556-562. [4] COSTA G, ORTALE R. XML document co-clustering via non-negative matrix tri-factorization[C]//Proceedings of the 2014 IEEE 26th International Conference on Tools with Artificial Intelligence. Washington, DC:IEEE Computer Society, 2014:607-614. [5] DHILLON I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]//Proceedings of the 2001 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2001:269-274. [6] SUN P, KIM K J. Document clustering using non-negative matrix factorization and fuzzy relationship[J]. Korea Communications Society Journal, 2010, 14(2):239-246. [7] LIAO Q, ZHANG Q. Local coordinate based graph-regularized NMF for image representation[J]. Signal Processing, 2016, 124:103-114. [8] EGGERT J, WERSING H, KORNER E. Transformation-invariant representation and NMF[C]//Proceedings of the 2004 IEEE International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2004:2535-2539. [9] LONG X, LU H, PENG Y, et al. Graph regularized discriminative non-negative matrix factorization for face recognition[J]. Multimedia Tools and Applications, 2014, 72(3):2679-2699. [10] WANG Y, JIA Y, HU C, et al. Non-negative matrix factorization framework for face recognition[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(4):495-511. [11] PEHARZ R, PERNKOPF F. Sparse non-negative matrix factorization with l0-constraints[J]. Australasian Journal of Special Education, 2012, 80(1):38-46. [12] LU N, MIAO H. Structure constrained non-negative matrix factorization for pattern clustering and classification[J]. Neurocomputing, 2016, 171:400-411. [13] LI S Z, HOU X W, ZHANG H J, et al. Learning spatially localized, parts-based representation[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2001,1:207-212. [14] XU W, LIU X, GONG Y, et al. Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. New York:ACM, 2003:267-273. [15] HUA W, HE X. Discriminative concept factorization for data representation[J]. Neurocomputing, 2011, 74(18):3800-3807. [16] TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323. [17] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326. [18] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Cambridge, MA:MIT Press, 2001:585-591. [19] ZHANG Z, ZHA H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (English Edition), 2004, 8(4):406-424. [20] ZHANG T, TAO D, LI X, et al. Patch alignment for dimensionality reduction[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1299-1313. [21] HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5(1):1457-1469. [22] DING C H Q, LI T, JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(1):45-55. [23] CAI D, HE X, HAN J, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560. [24] LIU H, WU Z, CAI D, et al. Constrained non-negative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1299-1311. [25] HU W, CHOI K S, WANG P, et al. Convex non-negative matrix factorization with manifold regularization[J]. Neural Networks, 2015, 63:94-103. [26] BABAEE M, TSOUKALAS S, BABAEE M, et al. Discriminative nonnegative matrix factorization for dimensionality reduction[J]. Neurocomputing, 2016, 173(P2):212-223. [27] YANG S, HOU C, ZHANG C, et al. Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning[J]. Neural Computing and Applications, 2013, 23(2):541-559. [28] WANG W, QIAN Y, TANG Y. Hypergraph-regularized sparse NMF for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(2):681-694. [29] TOLIC D, ANTULOVFANTULIN N, KOPRIVA I. A nonlinear orthogonal non-negative matrix factorization approach to subspace clustering[EB/OL].[2018-07-12]. https://arxiv.org/pdf/1709.10323.pdf. [30] GAO Y, JI R, CUI P, et al. Hyperspectral image classification through bilayer graph-based learning[J]. IEEE Transactions on Image Processing, 2014, 23(7):2769-2778. [31] KONG D, DING C, HUANG H. Robust nonnegative matrix factorization using L2,1-norm[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York:ACM, 2011:673-682. [32] DING C, ZHOU D, HE X, et al. R1-PCA:rotational invariant L1-norm principal component analysis for robust subspace factorization[C]//Proceedings of the 23rd International Conference on Machine Learning. New York:ACM, 2006:281-288. [33] SHI C, RUAN Q, AN G, et al. Hessian semi-supervised sparse feature selection based on L2,1/2-matrix norm[J]. IEEE Transactions on Multimedia, 2014, 17(1):16-28. [34] HUANG T-M, KECMAN V, KOPRIVA I. Kernel based algorithm for mining huge data set[J]. Studies in Computational Intelligence, 2006,17:11-60. [35] PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization:algorithms and complexity[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1998, 32(6):1258-1259. [36] 曹大为,贺超波,陈启买,等.基于加权核非负矩阵分解的短文本聚类算法[J].计算机应用,2018,38(8):2180-2184.(CAO D W, HE C B,CHEN Q M, et al. Short text clustering algorithm based on weighted kernel nonnegative matrix factorization[J]. Journal of Computer Applications, 2018, 38(8):2180-2184.) |