Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3617-3624.DOI: 10.11772/j.issn.1001-9081.2021091683
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Yunyan DU1,2, Hong LI1,2, Jinhui YANG1,2, Yu JIANG1,2, Yao MAO1,2( )
)
												  
						
						
						
					
				
Received:2021-09-27
															
							
																	Revised:2022-05-25
															
							
																	Accepted:2022-05-26
															
							
							
																	Online:2022-11-14
															
							
																	Published:2022-11-10
															
							
						Contact:
								Yao MAO   
													About author:DU Yunyan, born in 1997, M. S. candidate. Her research interests include target detection, few-shot learning.Supported by:
        
                   
            杜芸彦1,2, 李鸿1,2, 杨锦辉1,2, 江彧1,2, 毛耀1,2( )
)
                  
        
        
        
        
    
通讯作者:
					毛耀
							作者简介:杜芸彦(1997—),女,四川成都人,硕士研究生,主要研究方向:目标检测、小样本学习基金资助:CLC Number:
Yunyan DU, Hong LI, Jinhui YANG, Yu JIANG, Yao MAO. Few‑shot target detection based on negative‑margin loss[J]. Journal of Computer Applications, 2022, 42(11): 3617-3624.
杜芸彦, 李鸿, 杨锦辉, 江彧, 毛耀. 基于负边距损失的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3617-3624.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091683
| 1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
|---|---|---|---|---|---|
| -0.15 | 70.63 | 57.02 | 77.26 | 56.33 | 76.20 | 
| -0.10 | 80.96 | 61.93 | 80.61 | 60.90 | 79.14 | 
| -0.05 | 86.93 | 64.86 | 81.97 | 61.89 | 80.43 | 
| -0.02 | 89.15 | 66.13 | 82.81 | 62.43 | 80.94 | 
| 0 | 90.43 | 65.79 | 83.24 | 60.98 | 80.13 | 
| 0.02 | 90.96 | 66.83 | 83.68 | 61.69 | 79.53 | 
| 0.05 | 91.89 | 66.27 | 83.83 | 61.05 | 79.21 | 
| 0.10 | 90.37 | 65.55 | 82.16 | 59.24 | 77.53 | 
| 0.20 | 91.98 | 63.08 | 79.59 | 56.44 | 74.75 | 
Tab. 1 Classification accuracy comparison of Cosine Softmax loss with different m on miniImagenet dataset
| 1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
|---|---|---|---|---|---|
| -0.15 | 70.63 | 57.02 | 77.26 | 56.33 | 76.20 | 
| -0.10 | 80.96 | 61.93 | 80.61 | 60.90 | 79.14 | 
| -0.05 | 86.93 | 64.86 | 81.97 | 61.89 | 80.43 | 
| -0.02 | 89.15 | 66.13 | 82.81 | 62.43 | 80.94 | 
| 0 | 90.43 | 65.79 | 83.24 | 60.98 | 80.13 | 
| 0.02 | 90.96 | 66.83 | 83.68 | 61.69 | 79.53 | 
| 0.05 | 91.89 | 66.27 | 83.83 | 61.05 | 79.21 | 
| 0.10 | 90.37 | 65.55 | 82.16 | 59.24 | 77.53 | 
| 0.20 | 91.98 | 63.08 | 79.59 | 56.44 | 74.75 | 
| 1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
|---|---|---|---|---|---|
| -0.8 | 81.79 | 59.45 | 78.02 | 57.76 | 77.14 | 
| -0.5 | 88.82 | 59.03 | 79.25 | 58.46 | 78.24 | 
| -0.3 | 92.68 | 59.14 | 79.40 | 59.02 | 78.80 | 
| 0 | 93.22 | 58.83 | 79.34 | 56.87 | 77.97 | 
| 0.3 | 92.61 | 59.27 | 80.26 | 57.41 | 78.40 | 
| 0.5 | 88.78 | 58.90 | 78.61 | 57.54 | 77.44 | 
| 0.8 | 93.94 | 58.50 | 79.41 | 56.36 | 77.87 | 
Tab. 2 Classification accuracy comparison of Softmax loss with different m on miniImagenet dataset
| 1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
|---|---|---|---|---|---|
| -0.8 | 81.79 | 59.45 | 78.02 | 57.76 | 77.14 | 
| -0.5 | 88.82 | 59.03 | 79.25 | 58.46 | 78.24 | 
| -0.3 | 92.68 | 59.14 | 79.40 | 59.02 | 78.80 | 
| 0 | 93.22 | 58.83 | 79.34 | 56.87 | 77.97 | 
| 0.3 | 92.61 | 59.27 | 80.26 | 57.41 | 78.40 | 
| 0.5 | 88.78 | 58.90 | 78.61 | 57.54 | 77.44 | 
| 0.8 | 93.94 | 58.50 | 79.41 | 56.36 | 77.87 | 
| 方法 | Backbone | AP/% | AP50/% | AP75/% | 参数量/106 | FLOPs/109 | 
|---|---|---|---|---|---|---|
| LSTD | VGG‑16 | 3.2 | — | — | 138.36 | 15.5 | 
| FR | DarkNet‑19 | 5.6 | 12.3 | 4.6 | 20.83 | |
| Meta R‑CNN | ResNet‑101 | 8.7 | 19.1 | 6.6 | 44.55 | 7.85 | 
| MPSR | 9.8 | 17.9 | 9.7 | |||
| TFA | 10.0 | — | 9.3 | |||
| SRR‑FSD | 11.3 | 23.0 | 9.8 | |||
| FSCE | 11.9 | — | 10.5 | |||
| FSOD | ResNet‑50 | 11.1 | 20.4 | 10.6 | 25.56 | 4.12 | 
| Cos‑FSOD | 10.3 | 20.2 | 9.2 | |||
| Neg‑Mar Softmax FSTD(本文方法) | 10.9 | 21.4 | 10.1 | |||
| Neg‑Mar Cos‑Softmax FSTD (本文方法) | 12.2 | 22.8 | 11.7 | 
Tab.3 Performance comparison of different methods
| 方法 | Backbone | AP/% | AP50/% | AP75/% | 参数量/106 | FLOPs/109 | 
|---|---|---|---|---|---|---|
| LSTD | VGG‑16 | 3.2 | — | — | 138.36 | 15.5 | 
| FR | DarkNet‑19 | 5.6 | 12.3 | 4.6 | 20.83 | |
| Meta R‑CNN | ResNet‑101 | 8.7 | 19.1 | 6.6 | 44.55 | 7.85 | 
| MPSR | 9.8 | 17.9 | 9.7 | |||
| TFA | 10.0 | — | 9.3 | |||
| SRR‑FSD | 11.3 | 23.0 | 9.8 | |||
| FSCE | 11.9 | — | 10.5 | |||
| FSOD | ResNet‑50 | 11.1 | 20.4 | 10.6 | 25.56 | 4.12 | 
| Cos‑FSOD | 10.3 | 20.2 | 9.2 | |||
| Neg‑Mar Softmax FSTD(本文方法) | 10.9 | 21.4 | 10.1 | |||
| Neg‑Mar Cos‑Softmax FSTD (本文方法) | 12.2 | 22.8 | 11.7 | 
| 算法 | 负边距损失 | AP | AP50 | AP75 | APS | APM | APL | 
|---|---|---|---|---|---|---|---|
| FSOD(Ours Impl) | 10.7 | 20.1 | 10.0 | 2.2 | 11.6 | 17.8 | |
| Neg‑Mar Softmax FSTD(Ours) | √ | 10.9 | 21.4 | 10.1 | 3.5 | 12.4 | 19.2 | 
| Cos‑FSOD(Ours Impl) | 10.3 | 20.2 | 9.2 | 2.2 | 11.5 | 17.7 | |
| Neg‑Mar Cos‑Softmax FSTD (Ours) | √ | 12.2 | 22.8 | 11.7 | 3.6 | 12.4 | 20.9 | 
Tab. 4 Influence of negative margin loss on accuracy in few?shot target detection
| 算法 | 负边距损失 | AP | AP50 | AP75 | APS | APM | APL | 
|---|---|---|---|---|---|---|---|
| FSOD(Ours Impl) | 10.7 | 20.1 | 10.0 | 2.2 | 11.6 | 17.8 | |
| Neg‑Mar Softmax FSTD(Ours) | √ | 10.9 | 21.4 | 10.1 | 3.5 | 12.4 | 19.2 | 
| Cos‑FSOD(Ours Impl) | 10.3 | 20.2 | 9.2 | 2.2 | 11.5 | 17.7 | |
| Neg‑Mar Cos‑Softmax FSTD (Ours) | √ | 12.2 | 22.8 | 11.7 | 3.6 | 12.4 | 20.9 | 
| Backbone | AP | AP50 | AP75 | 
|---|---|---|---|
| ResNet‑34 | 9.4 | 19.5 | 8.7 | 
| ResNet‑50 | 12.2 | 22.8 | 11.7 | 
| ResNet‑101 | 14.0 | 24.3 | 13.4 | 
Tab. 5 Ablation experimental results of backbone networks unit: %
| Backbone | AP | AP50 | AP75 | 
|---|---|---|---|
| ResNet‑34 | 9.4 | 19.5 | 8.7 | 
| ResNet‑50 | 12.2 | 22.8 | 11.7 | 
| ResNet‑101 | 14.0 | 24.3 | 13.4 | 
| 1 | LIU W, ANGUELOY D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNIP 9905. Cham: Springer, 2016: 21-37. | 
| 2 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real‑time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 | 
| 3 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 | 
| 4 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2021-08-10]. . | 
| 5 | BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2021-07-05]. . | 
| 6 | 刘丹, 吴亚娟, 罗南超, 等. 嵌入注意力和特征交织模块的Gaussian‑YOLO v3目标检测[J]. 计算机应用, 2020, 40(8): 2225-2230. | 
| LIU D, WU Y J, LUO N C, et al. Object detection of Gaussian‑YOLO v3 implanting attention and feature intertwine modules[J]. Journal of Computer Applications, 2020, 40(8): 2225-2230. | |
| 7 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9):1904-1916. 10.1109/tpami.2015.2389824 | 
| 8 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 | 
| 9 | GIRSHICK R. Fast RCNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 | 
| 10 | REN S, HE K, GIRSHICK R, et al. Faster R‑CNN: towards real‑ time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. 10.1109/tpami.2016.2577031 | 
| 11 | WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few‑shot learning[J]. ACM Computing Surveys, 2020, 53(3):1-34. 10.1145/3386252 | 
| 12 | MILLER E G, MATSAKIS N E, VIOLA P A. Learning from one example through shared densities on transforms[C]// Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2000: 464-471. 10.1109/cvpr.2000.855790 | 
| 13 | SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Delta‑ encoder: an effective sample synthesis method for few‑shot object recognition[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 2850-2860. | 
| 14 | 甘岚, 沈鸿飞, 王瑶, 等. 基于改进DCGAN的数据增强方法[J]. 计算机应用, 2021, 41(5): 1305-1313. | 
| GAN L, SHEN H F, WANG Y, et al. Data augmentation method based on improved deep convolutional generative adversarial networks[J]. Journal of Computer Applications, 2021, 41(5): 1305-1313. | |
| 15 | 陈佛计, 朱枫, 吴清潇, 等. 基于生成对抗网络的红外图像数据增强[J]. 计算机应用, 2020, 40(7): 2084-2088. | 
| CHEN F J, ZHU F, WU Q X, et al. Infrared image data augmentation based on generative adversarial network[J]. Journal of Computer Applications, 2020, 40(7): 2084-2088. | |
| 16 | HARIHARAN B, GIRSHICK R. Low‑shot visual recognition by shrinking and hallucinating features[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3037-3046. 10.1109/iccv.2017.328 | 
| 17 | PFISTER T, CHARLES J, ZISSERMAN A. Domain‑adaptive discriminative one‑shot learning of gestures[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8694. Cham: Springer, 2014: 814-829. | 
| 18 | DOUZE M, SZLAM A, HARIHARAN B, et al. Low‑shot learning with large‑scale diffusion[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 3349-3358. 10.1109/cvpr.2018.00353 | 
| 19 | GRANT E, FINN C, LEVINE S, et al. Recasting gradient‑based meta‑learning as hierarchical Bayes [EB/OL]. [2021-08-10]. . | 
| 20 | TSAI Y, SALAKHUTDINOV R. Improving one‑shot learning through fusing side information [EB/OL]. [2021-06-19]. . | 
| 21 | GAO H, SHOU Z, ZAREIAN A, et al. Low‑shot learning via covariance‑preserving adversarial augmentation networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 983-993. | 
| 22 | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3637-3645. | 
| 23 | SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few‑shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4077-4087. | 
| 24 | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few‑shot learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. 10.1109/cvpr.2018.00131 | 
| 25 | KOCH G R, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one‑shot image recognition[C/OL]// Proceedings of the 2015 32nd International Conference on Machine Learning. Brookline, MA: JMLR.org, 2015 [2021-06-05]. . | 
| 26 | MUNKHDALAI T, YU H. Meta networks[C]// Proceedings of the 34th International Conference on Machine Learning. Brookline, MA: JMLR.org, 2017: 2554-2563. | 
| 27 | LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human‑ level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266): 1332-1338. 10.1126/science.aab3050 | 
| 28 | KINGMA D P, WELLING M. Auto‑encoding variational Bayes [EB/OL]. [2021-07-10]. . | 
| 29 | HOFFMAN J, TZENG E, DONAHUE J, et al. One‑shot adaptation of supervised deep convolutional models [EB/OL]. [2021-06-15]. . | 
| 30 | LEE Y, CHOI S. Gradient‑based meta‑learning with learned layerwise metric and subspace [EB/OL]. [2021-05-10]. . | 
| 31 | 潘兴甲,张旭龙,董未名,等.小样本目标检测的研究现状[J].南京信息工程大学学报(自然科学版),2019,11(6):698-705. | 
| PAN X J, ZHANG X L, DONG W M, et al. A survey of few‑shot object detection[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2019,11(6):698-705 | |
| 32 | CHEN H, WANG Y, WANG G, et al. LSTD: a low‑shot transfer detector for object detection [EB/OL]. [2021-04-25]. . | 
| 33 | SINGH P, VARADARAJAN S, SINGH A N, et al. Multidomain document layout understanding using few shot object detection [EB/OL]. [2021-05-10]. . | 
| 34 | ZHANG T, ZHANG Y, SUN X, et al. Comparison network for one‑shot conditional object detection [EB/OL]. [2021-08-10]. . | 
| 35 | KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representative‑based metric learning for classification and few‑shot object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Computer Society, 2019: 5192-5201. 10.1109/cvpr.2019.00534 | 
| 36 | SUN B, LI B, CAI S, et al. FSCE: Few‑shot object detection via contrastive proposal encoding[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2021: 7352-7362. 10.1109/cvpr46437.2021.00727 | 
| 37 | FU K, ZHANG T, ZHANG Y, et al. Meta‑SSD: towards fast adaptation for few‑shot object detection with meta‑learning[J]. IEEE Access, 2019, 7: 77597-77606. 10.1109/access.2019.2922438 | 
| 38 | FAN Q, ZHUO W, TANG C K, et al. Few‑shot object detection with attention‑RPN and multi‑relation detector[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2020:4012-4021. 10.1109/cvpr42600.2020.00407 | 
| 39 | WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of the 2016 European Conference on Computer Vision, LNIP 9911. Cham: Springer, 2016: 499-512. | 
| 40 | LIU W, WEN Y, YU Z, et al. Large‑margin Softmax loss for convolutional neural networks [EB/OL]. [2021-07-01]. . | 
| 41 | DENG J, GUO J, ZAFEIRIOU S. ArcFace: additive angular margin loss for deep face recognition [EB/OL]. [2021-05-17]. . | 
| 42 | WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 5265-5274. 10.1109/cvpr.2018.00552 | 
| 43 | LIU B, CAO Y, LIN Y, et al. Negative margin matters: understanding margin in few‑shot classification [C]// Proceedings of the 2020 European Conference on Computer Vision, LNIP 12361. Cham: Springer, 2020: 438-455. | 
| 44 | LIU W, WEN Y, YU Z, et al. SphereFace: deep hypersphere embedding for face recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 6738-6746. 10.1109/cvpr.2017.713 | 
| 45 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNIP 8693. Cham: Springer, 2014: 740-755. | 
| 46 | KANG B, ZHUANG L, XIN W, et al. Few‑shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8420-8429. 10.1109/iccv.2019.00851 | 
| 47 | YAN X, CHEN Z, XU A, et al. Meta R‑CNN: towards general solver for instance‑level low‑shot learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585. 10.1109/iccv.2019.00967 | 
| 48 | ZHU C, CHEN F, AHMED U, et al. Semantic relation reasoning for shot‑stable few‑shot object detection [EB/OL]. [2021-08-05]. . | 
| 49 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [EB/OL]. [2021-08-10]. . | 
| 50 | WU J, LIU S, HUANG D, et al. Multi‑scale positive sample refinement for few‑shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNIP 12361. Cham: Springer, 2020: 456-472. | 
| [1] | Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet [J]. Journal of Computer Applications, 2024, 44(7): 2200-2207. | 
| [2] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. | 
| [3] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. | 
| [4] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. | 
| [5] | Cunyi LIAO, Yi ZHENG, Weijin LIU, Huan YU, Shouyin LIU. Decoupling-fusing algorithm for multiple tasks with autonomous driving environment perception [J]. Journal of Computer Applications, 2024, 44(2): 424-431. | 
| [6] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. | 
| [7] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. | 
| [8] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. | 
| [9] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. | 
| [10] | Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3 [J]. Journal of Computer Applications, 2023, 43(8): 2611-2618. | 
| [11] | Haifeng LI, Fan ZHANG, Minnan PIAO, Huaichao WANG, Nansha LI, Zhongcheng GUI. Automatic detection of targets under airport pavement based on channel and spatial attention [J]. Journal of Computer Applications, 2023, 43(3): 930-935. | 
| [12] | CHEN Haiyan, JIA Mingming, ZHAO Wenli, WANG Chanfei. Target detection of Ochotona curzoniae based on embedded Jetson TX2 [J]. Journal of Computer Applications, 2023, 43(1): 98-103. | 
| [13] | LI Kewen, YANG Jiantao, HUANG Zongchao. Improved YOLOv3 target detection based on boundary limit point features [J]. Journal of Computer Applications, 2023, 43(1): 81-87. | 
| [14] | Zhihong XI, Jiaxu WEN. Indoor dynamic scene localization and mapping based on target detection [J]. Journal of Computer Applications, 2022, 42(9): 2853-2857. | 
| [15] | Shiwen ZHANG, Chunhua DENG, Junwen ZHANG. Application of anisotropic non-maximum suppression in industrial target detection [J]. Journal of Computer Applications, 2022, 42(7): 2210-2218. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||