Abstract:Traditional Collaborative Filter (CF) often suffers from the shortage of historic information. A transfer-Bagging algorithm based on hybrid classifiers was proposed for question recommendation. The main idea was that the recommendation and prediction problem were cast into the framework of transfer learning, then the users' demand for recommend questions were treated as target domain, while similar users who had applicable historic information were employed as auxiliary domain to help training target classifiers. The experimental results on both question recommendation platform and popular open datasets show that the accuracy of the proposed algorithm is 10%-20% higher than CF, and 5%-10% higher than single Bagging algorithm. The method solves cold start-up and sparse data problem in question recommendation field, and can be generalized into production recommendation on E-commerce platform.